Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Macromol Biosci ; 19(6): e1900098, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026127

RESUMO

In this study, the cyto-compatibility and cellular functionality of cell-laden gelatin-methacryloyl (Gel-MA) hydrogels fabricated using a set of photo-initiators which absorb in 400-450 nm of the visible light range are investigated. Gel-MA hydrogels cross-linked using ruthenium (Ru) and sodium persulfate (SPS), are characterized to have comparable physico-mechanical properties as Gel-MA gels photo-polymerized using more conventionally adopted photo-initiators, such as 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959) and lithium phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP). It is demonstrated that the Ru/SPS system has a less adverse effect on the viability and metabolic activity of human articular chondrocytes encapsulated in Gel-MA hydrogels for up to 35 days. Furthermore, cell-laden constructs cross-linked using the Ru/SPS system have significantly higher glycosaminoglycan content and re-differentiation capacity as compared to cells encapsulated using I2959 and LAP. Moreover, the Ru/SPS system offers significantly greater light penetration depth as compared to the I2959 system, allowing thick (10 mm) Gel-MA hydrogels to be fabricated with homogenous cross-linking density throughout the construct. These results demonstrate the considerable advantages of the Ru/SPS system over traditional UV polymerizing systems in terms of clinical relevance and practicability for applications such as cell encapsulation, biofabrication, and in situ cross-linking of injectable hydrogels.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Engenharia Tecidual , Diferenciação Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Gelatina/química , Gelatina/farmacologia , Gelatina/efeitos da radiação , Humanos , Hidrogéis/química , Hidrogéis/efeitos da radiação , Luz , Polimerização/efeitos dos fármacos , Polimerização/efeitos da radiação , Polímeros/química , Polímeros/farmacologia
2.
Adv Healthc Mater ; 8(19): e1900979, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31402634

RESUMO

For creating functional tissue analogues in tissue engineering, stem cells require very specific 3D microenvironments to thrive and mature. Demanding (stem) cell types that are used nowadays can find such an environment in a heterogeneous protein mixture with the trade name Matrigel. Several variations of synthetic hydrogel platforms composed of poly(ethylene glycol) (PEG), which are spiked with peptides, have been recently developed and shown equivalence to Matrigel for stem cell differentiation. Here a clinically relevant hydrogel platform, based on PEG and gelatin, which even outperforms Matrigel when targeting 3D prevascularized bone and liver organoid tissue engineering models is presented. The hybrid hydrogel with natural and synthetic components stimulates efficient cell differentiation, superior to Matrigel models. Furthermore, the strength of this hydrogel lies in the option to covalently incorporate unmodified proteins. These results demonstrate how a hybrid hydrogel platform with intermediate biological complexity, when compared to existing biological materials and synthetic PEG-peptide approaches, can efficiently support tissue development from human primary cells.


Assuntos
Colágeno/química , Hidrogéis/química , Laminina/química , Polietilenoglicóis/química , Proteoglicanas/química , Engenharia Tecidual/instrumentação , Animais , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Catálise , Diferenciação Celular , Sobrevivência Celular , Meios de Cultura/química , Combinação de Medicamentos , Humanos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Organoides/química , Peptídeos/química , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Trends Biotechnol ; 34(5): 394-407, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26867787

RESUMO

Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.


Assuntos
Materiais Biocompatíveis , Gelatina , Hidrogéis , Metacrilatos , Engenharia Tecidual/métodos , Cicatrização/fisiologia , Animais , Cartilagem/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA