Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biol Pharm Bull ; 47(1): 196-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246645

RESUMO

Psoriasis is a chronic T-cell-mediated autoimmune skin disease. Tacrolimus (FK506) is commonly used treatment for psoriasis. However, since the molecular weight of FK506 is more than 500 Da, its skin penetration is limited, so that there is a need to improve the penetrability of FK506 to allow for more effective treatment. To this end, we employed iontophoresis (ItP), which is a physical, intradermal drug delivery technology that relies on the use of weak electric current. Previous findings suggest that activation of cell signaling by the weak electric current applied during ItP may affect the expression of inflammatory cytokines, leading to aggravation of psoriasis. In this study, we analyzed the effect of ItP on the expression of various inflammatory cytokines in the skin, and subsequently examined the therapeutic effect of ItP using negatively-charged liposomes encapsulating FK506 (FK-Lipo) in a rat psoriasis model induced by imiquimod. We found that ItP (0.34 mA/cm2, 1 h) did not affect mRNA levels of inflammatory cytokines or epidermis thickness, indicating that ItP is a safe technology for psoriasis treatment. ItP of FK-Lipo suppressed the expression of inflammatory cytokines induced by imiquimod treatment to a greater extent than skin treated with FK506 ointment for 1 h. Furthermore, epidermis thickening was significantly suppressed only by ItP of FK-Lipo. Taken together, results of this study demonstrate the successful development of an efficient treatment for psoriasis by combining FK-Lipo and ItP, without disease aggravation associated with the weak electric current.


Assuntos
Iontoforese , Psoríase , Animais , Ratos , Tacrolimo/uso terapêutico , Lipossomos , Imiquimode , Psoríase/tratamento farmacológico , Citocinas
2.
Biol Pharm Bull ; 46(8): 1098-1104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532560

RESUMO

Since small extracellular vesicle (sEVs) are involved in cell-to-cell communication via transfer of certain bioactive molecules and have the capability to overcome biological barriers against drug transport, their use as a drug delivery system (DDS) has been demonstrated in treatment of a diverse range of diseases. However, some issues in drug encapsulation have been pointed out, including low encapsulation efficiency and poor reproducibility. It was previously reported that liposomes containing phosphatidylserine (PS) can fuse together in the presence of calcium ion, which allows for drug encapsulation into the resultant liposomes (i.e., calcium fusion method). On the other hand, PS is reportedly present in lipid membrane of sEVs as a distinct lipid composition. We therefore hypothesized that PS-mediated membrane fusion of sEVs with PS-liposomes encapsulating therapeutic agents via the calcium fusion method can be applied to convenient drug encapsulation into sEVs. Membrane fusion of PS-liposomes and sEVs derived from murine melanoma B16F1 cells (B16-sEVs) was firstly confirmed. The obtained nanoparticles, termed chimeric nanoparticles (CM-NP), showed comparable cellular uptake to B16-sEVs into B16F1 cells. Moreover, CM-NP encapsulating an anticancer drug doxorubicin (DOX) (CM-NP-DOX) could be prepared by membrane fusion of PS-liposomes encapsulating DOX (PS-Lipo-DOX) and B16-sEVs. CM-NP-DOX exhibited a superior anticancer effect on B16F1 cells in vitro compared with PS-Lipo-DOX. These findings suggest that the calcium fusion method could be applied for membrane fusion of sEVs and PS-liposomes, and that this approach would likely be useful for efficient drug encapsulation into sEVs, as well as increasing liposome functionality.


Assuntos
Vesículas Extracelulares , Nanopartículas , Animais , Camundongos , Lipossomos , Cálcio , Fusão de Membrana , Reprodutibilidade dos Testes , Doxorrubicina/farmacologia , Lipídeos
3.
Biochem Biophys Res Commun ; 611: 53-59, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35477093

RESUMO

Delivery of cerebroprotective agents using liposomes has been demonstrated to be useful for treating cerebral ischemia/reperfusion (I/R) injury. We previously reported that intravenous administration of liposomes with diameters of 100 nm showed higher accumulation in the I/R region compared with larger liposomes (>200 nm) by passage through the disintegrated blood-brain barrier, suggesting a size-dependence for liposome-mediated drug delivery. Based on these findings, we hypothesized that regulation of liposomal particle size (<100 nm) may enhance the therapeutic efficacy of encapsulated drugs on cerebral I/R injury. Herein, we prepared lipid nanoparticles (LNP) with particle sizes <100 nm by the microfluidics method and compared their therapeutic potential with LNP exhibiting sizes >100 nm in cerebral I/R model rats. Intravenously administered smaller LNP (ca. 60 nm) exhibited wider accumulation and diffusivity in the brain parenchyma of the I/R region compared with larger LNP (>100 nm). Importantly, treatment with LNP encapsulating the cerebroprotective agent FK506 (FK-LNP) with particle sizes <100 nm showed greater cerebroprotective effects than FK-LNP with sizes >100 nm, and also significantly ameliorated brain injury. These results suggest that particle size regulation of LNP to sizes <100 nm can enhance the therapeutic effect of encapsulated drugs for treatment of cerebral I/R injury, and that FK-LNP could be a promising cerebroprotective agent.


Assuntos
Isquemia Encefálica , Nanopartículas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Lipossomos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Tamanho da Partícula , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
4.
Chem Pharm Bull (Tokyo) ; 70(5): 334-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491189

RESUMO

Targeted drug delivery using nanoparticles has been applied for the treatment of diverse diseases, including cancer and inflammatory diseases. Nanoparticle-mediated delivery of therapeutic agents via the enhanced permeability and retention effect generally augments their therapeutic efficiency; however, limitations with passive entry of nanoparticles into diseased sites, due to the presence of biological barriers represented by the endothelial layer, remain to be addressed. To this end, development of nanoparticles with intrinsic characteristics similar to circulatory cells (e.g., leukocytes, platelets) for use as biomimetic drug delivery systems (DDS) has been focused as a means to overcome the issues of conventional DDS. In particular, synthetic biomimetic nanoparticles coated with cellular membranes were recently prepared and shown to actively overcome the inflamed vessels and tumor microenvironment as a result of the functionality of membrane proteins, which allowed secure drug delivery into diseased sites. We recently developed liposomes modified with leukocyte membrane proteins via intermembrane protein transfer, a simple method to reconstitute cellular membrane proteins onto lipid bilayers. The resultant liposomes demonstrated the ability to cross the inflamed endothelial layer and permeate into tumor tissue by mimicking the properties of leukocytes. Thus, biomimetic DDS offer promise as new therapeutic approaches for various diseases by overcoming biological barriers that typically inhibit drug delivery. Herein, we review recent approaches to develop biomimetic DDS using the cell membrane coating method, and highlight our recent findings on leukocyte-mimetic liposomes prepared via intermembrane protein transfer.


Assuntos
Biomimética , Lipossomos , Sistemas de Liberação de Medicamentos , Proteínas de Membrana , Sistemas de Liberação de Fármacos por Nanopartículas
5.
Biol Pharm Bull ; 43(8): 1272-1274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741949

RESUMO

Our previous study reported that co-encapsulation of potent antioxidants astaxanthin (Asx) and capsaisin (Cap) into liposomes brought about synergistically higher antioxidative activity than the calculated additive activity of each single antioxidant encapsulating liposome. Based on the previous computational chemistry analysis, the synergistic effect was revealed to be resulted from intermolecular interactions between Asx, especially 3R,3'R-form of Asx stereoisomer (Asx-R), and Cap, by which changes of electronic states of the polyene moiety of Asx-R were induced. Although liposomes co-encapsulating Asx-R and Cap (Asx-R/Cap-Lipo) at an optimal ratio clearly showed synergistic antioxidative activity in vitro, it is unclear whether the effective antioxidative activity derived from intermolecular interaction between Asx-R and Cap is also exerted in vivo. Therefore, in this study, we investigated therapeutic potential of Asx-R/Cap-Lipo as an antioxidant formulation in vivo. For this purpose, we employed carbon tetrachloride (CCl4)-induced acute liver injury rat model, since CCl4 is known to cause oxidative damage in liver. CCl4 administration significantly increased the levels of aspartate transaminase (AST) and alanine aminotransferase (ALT). Intravenous combined administration of liposomes encapsulating Asx-R (Asx-R-Lipo) and liposomes encapsulating Cap (Cap-Lipo) significantly decreased CCl4-induced increase of AST and ALT levels. Importantly, the treatment with Asx-R/Cap-Lipo tended to show higher protective effect on acute liver injury than combined treatment with Asx-R-Lipo plus Cap-Lipo. These results suggest that co-encapsulated Asx-R and Cap in liposomal membranes could exert more effective antioxidative activities in vivo, and that Asx-R/Cap-Lipo would be a hopeful antioxidant formulation for treating reactive oxygen species-related diseases.


Assuntos
Antioxidantes/farmacologia , Capsaicina/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Aguda , Animais , Capsaicina/química , Capsaicina/farmacologia , Tetracloreto de Carbono , Lipossomos , Masculino , Ratos , Ratos Wistar , Xantofilas/administração & dosagem , Xantofilas/química , Xantofilas/farmacologia
6.
Chem Pharm Bull (Tokyo) ; 66(7): 714-720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962454

RESUMO

We previously found that antioxidative activity of liposomes co-encapsulating astaxanthin (Asx) and tocotrienols (T3s) was higher than the calculated additive activity, which results from intermolecular interactions between both antioxidants (J. Clin. Biochem. Nutr., 59, 2016, Kamezaki et al.). Herein, we conducted experiments to optimize Asx/α-T3 ratio for high antioxidative activity, and tried to elucidate details of intermolecular interaction of Asx with α-T3. Higher activity than calculated additive value was clearly observed at an Asx/α-T3 ratio of 2 : 1, despite two α-T3 would potentially interact with two terminal rings of one Asx. The synthetic Asx used in this study was a mixture of three stereoisomers, 3R,3'R-form (Asx-R), 3S,3'S-form (Asx-S) and 3R,3'S-meso form (Asx-meso). The calculated binding energy of the Asx-S/α-T3 complex was higher than those of Asx-R/α-T3 and Asx-meso/α-T3, suggesting that Asx-S and α-T3 is the most preferable combination for the intermolecular interaction. The optimal Asx-S/α-T3 ratio for antioxidation was shown to be 1 : 2. These results suggest that the Asx stereochemistry affects the intermolecular interaction of Asx/α-T3. Moreover, the absorption spectrum changes of Asx-S upon co-encapsulation with α-T3 in liposomes indicate that the electronic state of Asx-S is affected by intermolecular interactions with α-T3. Further, intermolecular interactions with α-T3 affected the electronic charges on the C9, C10 and C15 atoms in the polyene moiety of Asx-S. In conclusion, the intermolecular interaction of Asx/T3 depends on the Asx stereochemistry, and caused a change in the electronic state of the Asx polyene moiety by the presence of double bond in the T3 triene moiety.


Assuntos
Antioxidantes/química , Carotenoides/química , Lipossomos/química , Tocotrienóis/química , Antioxidantes/síntese química , Lipossomos/síntese química , Estrutura Molecular , Estereoisomerismo , Xantofilas/síntese química , Xantofilas/química
7.
Biomacromolecules ; 18(2): 535-543, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28055201

RESUMO

Delivery of anticancer drugs into tumor cores comprised of malignant cancer cells can result in potent therapeutic effects. However, conventional nanoparticle-based drug delivery systems used for cancer therapy often exhibit inefficient tumor-penetrating properties, thus, suggesting the need to improve the functional design of such systems. Herein, we focus on the interactions between cancer cells and the extracellular matrix (ECM) and demonstrate that liposomes modified with slightly acidic pH-sensitive peptide (SAPSp-lipo) can penetrate in vivo tumor tissue and in vitro spheroids comprised of cancer cells and ECM. We previously reported SAPSp-lipo, tumor microenvironment-sensitive liposomes, are effectively delivered to tumor tissue (Hama et al. J Control Release 2015, 206, 67-74). Compared with conventional liposomes, SAPSp-lipo could be delivered to deeper regions within both spheroids and tumor tissues. Furthermore, tumor penetration was found to be promoted at regions where actin depolymerization was induced by SAPSp-lipo and inhibited by the polymerization of actin. In addition, SAPSp-lipo attenuated the interaction between cancer cells and ECM, contributing to the penetration of SAPSp-lipo. These results suggest that SAPSp-lipo penetrates tumors via the interspace route and is accompanied by actin depolymerization. Taken together, SAPSp-lipo demonstrates potential as a novel tumor-penetrable drug carrier for induction of therapeutic effects against malignant cells that comprise tumor cores.


Assuntos
Actinas/metabolismo , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Lipossomos/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Nanopartículas/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Matriz Extracelular/efeitos dos fármacos , Lipossomos/química , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Pelados , Nanopartículas/química , Fragmentos de Peptídeos/administração & dosagem , Polimerização , Células Tumorais Cultivadas , Microambiente Tumoral
8.
Biol Pharm Bull ; 40(6): 941-944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28566638

RESUMO

UV rays induce melanin production in the skin, which, from a cosmetic point of view, is problematic. Reactive oxygen species (ROS) generated in the skin upon UV irradiation are thought to be responsible for melanin production. Thus, effective antioxidants are recognized as useful tools for prevention of UV-induced melanin production. Redox nanoparticles (RNPs) containing nitroxide radicals as free radical scavengers were previously developed, and shown to be effective ROS scavengers in the body. RNPs are therefore expected to be useful for effective protection against UV-induced melanin production. However, as the sizes of RNPs are typically larger than the intercellular spaces of the skin, transdermal penetration is difficult. We recently demonstrated effective transdermal delivery and accumulation of nanoparticles in the epidermal layer via faint electric treatment, i.e., iontophoresis, suggesting that iontophoresis of RNPs may be a useful strategy for prevention of UV-induced melanin production in the skin. Herein, we performed iontophoresis of RNPs on the dorsal skin of hairless mice that produce melanin in response to light exposure. RNPs accumulated in the epidermal layer upon application of iontophoresis. Further, the combination of RNPs with iontophoresis decreased UV-induced melanin spots and melanin content in the skin. Taken together, we successfully demonstrated that iontophoresis-mediated accumulation of RNPs in the epidermis prevented melanin production.


Assuntos
Antioxidantes/administração & dosagem , Óxidos N-Cíclicos/administração & dosagem , Epiderme/efeitos da radiação , Iontoforese , Melaninas/metabolismo , Nanopartículas/administração & dosagem , Raios Ultravioleta , Animais , Epiderme/metabolismo , Masculino , Camundongos Pelados , Oxirredução , Polímeros/administração & dosagem
9.
Chem Pharm Bull (Tokyo) ; 64(5): 432-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150475

RESUMO

Liposomes are closed-membrane vesicles comprised of lipid bilayers, in which the inside of the vesicles is isolated from the external environment. Liposomes are therefore often used as models for biomembranes and as drug delivery carriers. However, materials encapsulated within liposomes often cannot respond to changes in the external environment. The ability of enclosed materials to maintain their responsiveness to changes in the external environment following encapsulation into liposomes would greatly expand the applicability of such systems. We hypothesize that embedding pore-like "access points" into the liposomal membrane could allow for the transmission of information between the internal and external liposomal environments and thus overcome this inherent limitation of conventional liposomes. To investigate this, we evaluated whether a change in the pH of an external solution could be transmitted to the inside of liposomes through the pore-forming protein, yeast voltage-dependent anion channel (VDAC). Transmission of a pH change via VDAC was evaluated using a polyglutamic acid/doxorubicin complex (PGA/Dox) as an internal pH sensor. Upon encapsulation into conventional liposomes, PGA/Dox exhibits no pH sensitivity due to isolation from the external environment. On the other hand, PGA/Dox was found to retain its pH sensitivity upon encapsulation into VDAC-reconstituted liposomes, suggesting that VDAC facilitated the transmission of information on the pH of the external environment to the inside of the liposomes. In conclusion, we successfully demonstrated the transmission of information between the external and internal liposomal environments by a stable pore-like structure embedded into the liposomal membranes, which serve as access points.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Concentração de Íons de Hidrogênio , Ácido Poliglutâmico/química , Ácido Poliglutâmico/metabolismo , Porosidade , Saccharomyces cerevisiae , Canais de Ânion Dependentes de Voltagem/química
10.
J Biol Chem ; 289(4): 2450-6, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24318878

RESUMO

Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200-400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57-65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca(2+) inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology.


Assuntos
Epiderme/metabolismo , Junções Intercelulares , Iontoforese/métodos , Nanopartículas , Fenômenos Fisiológicos da Pele , Animais , Conexina 43/metabolismo , Lipossomos/farmacologia , Masculino , Ocludina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
11.
FASEB J ; 27(7): 2862-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23515444

RESUMO

The type III secretion apparatus (T3SA) participates in the secretion of bacterial proteins called effectors, although the detailed mechanism of effector secretion remains unclear. T3SA and flagellum were shown to branch from a common ancestor and also show structural similarity. In addition, both T3SA-dependent effector secretion and flagellar rotation were reported to require proton-motive force (PMF) for activity. From these reports, we hypothesized that T3SA, like the flagellum, would rotate via PMF and that this rotation is responsible for effector secretion. To observe T3SA rotation, we constructed a novel observation system by modifying the tip of T3SA on bacterial cell membranes with an observation probe, which allowed documentation of T3SA rotation for the first time. T3SA rotation was stopped by the addition of a protonophore that decreases PMF. Moreover, increased viscosity of the observation medium inhibited both rotation of T3SA associated with beads and effector secretion. These results suggested that effector secretion would follow the PMF-dependent rotation of T3SA and could be inhibited by preventing T3SA rotation. Moreover, the motion-track analysis of bead rotation suggested that the T3SA needle might be flexible. Consequently, we propose a "rotational secretion model" as a novel effector secretion mechanism of T3SA.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/fisiologia , Força Próton-Motriz/fisiologia , Pseudomonas aeruginosa/fisiologia , ADP Ribose Transferases/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Western Blotting , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Flagelos/metabolismo , Flagelos/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Microscopia de Força Atômica , Modelos Biológicos , Modelos Moleculares , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Polietilenoglicóis/farmacologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ionóforos de Próton/farmacologia , Força Próton-Motriz/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Rotação
12.
Mol Pharm ; 11(8): 2787-95, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24901376

RESUMO

Exogenous antigen proteolysis by proteasomes and amino peptidases is essential for the production of mature major histocompatibility complex class I (MHC-I) peptides to induce cross-presentation. We report here that when liposomes are modified with octaarginine (R8-Lip), a type of cell-penetrating peptide, the production of the mature MHC-I peptide is enhanced by promoting the C-terminal trimming of the antigen peptide. The efficiency of cross-presentation of ovalbumin (OVA) using the R8-Lip was dramatically higher than that by octalysine modified liposomes (K8-Lip) in mouse bone-marrow derived dendritic cells (BMDCs), although the physical characters of both liposomes were comparable. In this study, we investigated the mechanism responsible for the enhancement in cross-presentation by R8-Lip. Although the efficiencies of cellular uptake, endosomal escape, proteolysis of OVA and DC maturation between the two systems were essentially the same, an analysis of peptide trimming to SIINFEKL (mature MHC-I peptide of OVA) by using R8-Lip and K8-Lip encapsulating peptides of various length clearly indicates that the use of R8-Lip enhances the efficiency of the C-terminal cleavage of antigen-derived peptides. This finding provides a new strategy for achieving efficient cross-presentation by using R8 peptide and arginine-rich peptides. Moreover, this result may contribute to the development of a new paradigm regarding the machinery associated with antigen peptide production.


Assuntos
Antígenos/química , Apresentação Cruzada , Lipossomos/química , Oligopeptídeos/química , Animais , Apresentação de Antígeno , Arginina/química , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Peptídeos Penetradores de Células/química , Cloroquina/química , Células Dendríticas/citologia , Endossomos/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Ovalbumina/química , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína
13.
Biol Pharm Bull ; 35(12): 2238-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23207776

RESUMO

Astaxanthin (Asx) is known to be a potent quencher of singlet oxygen and an efficient scavenger of superoxide anion. Therefore, Asx would be expected to be a useful antioxidant for the prevention of oxidative stress, a causative factor in severe diseases such as ischemic reperfusion injury. However, it is still unclear whether Asx has scavenging capability against the most potent reactive oxygen species (ROS), hydroxyl radical, because the hydrophobicity of Asx prevents analysis of hydroxyl radical scavenging ability in aqueous solution. In this study, to solve this problem, liposomes containing Asx (Asx-lipo), which could be dispersed in water, were prepared, and the scavenging ability of Asx-lipo for the hydroxyl radical was examined. The liposomal formulation enabled encapsulation of a high concentration of Asx. Asx-lipo gave a dose-dependent reduction of chemiluminescence intensity induced by hydroxyl radical in aqueous solution. Hydroxyl radical scavenging of Asx was more potent than α-tocopherol. The absorbance of Asx in the liposome decreased after reduction of hydroxyl radicals, indicating the direct hydroxyl radical scavenging by Asx. Moreover, Asx-lipo prevented hydroxyl radical-induced cytotoxicity in cultured NIH-3T3 cells. In conclusion, Asx has potent scavenging capability against hydroxyl radicals in aqueous solution, and this paper is the first report regarding hydroxyl radial scavenging by Asx.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Radical Hidroxila/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Cápsulas , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/administração & dosagem , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Camundongos , Células NIH 3T3 , Xantofilas/administração & dosagem , Xantofilas/farmacologia , alfa-Tocoferol/farmacologia
14.
Biol Pharm Bull ; 35(5): 781-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22687417

RESUMO

Superoxide dismutase (SOD) is a potent antioxidant agent that protects against UV-induced skin damage. However, its high molecular weight is a significant obstacle for efficient delivery into the skin through the stratum corneum and development of antioxidant activity. Recently, we developed a non-invasive transfollicular delivery system for macromolecules using a combination of liposomes and iontophoresis, that represents promising technology for enhancing transdermal administration of charged drugs (IJP, 403, 2011, Kajimoto et al.). In this study, in rats we attempted to apply this system to intradermal delivery of SOD for preventing UV-induced skin injury. SOD encapsulating in cationic liposomes was subjected to anodal iontophoresis. After iontophoretic treatment, the liposomes were diffused widely in the viable skin layer around hair follicles. In contrast, passive diffusion failed to transport liposomes efficiently into the skin. Iontophoretic delivery of liposomes encapsulating SOD caused a marked decrease in the production of oxidative products, such as malondialdehyde, hexanoyl lysine, and 8-hydroxi-2-deoxyguanosine, in UV-irradiated skin. These findings suggested that functional SOD can be delivered into the skin using a combination of iontophoresis and a liposomal system. In conclusion, we succeeded in developing an efficient intradermal SOD delivery system, that would be useful for delivery of other macromolecules.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Iontoforese/métodos , Absorção Cutânea/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Superóxido Dismutase/administração & dosagem , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cátions , Folículo Piloso , Lipossomos , Masculino , Peso Molecular , Oxidantes/biossíntese , Ratos , Ratos Sprague-Dawley , Pele/efeitos da radiação , Dermatopatias/etiologia , Dermatopatias/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
15.
J Pharm Sci ; 110(4): 1701-1709, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33129835

RESUMO

As leukocytes can penetrate into deep regions of a tumor mass, leukocyte-mimetic liposomes (LM-Lipo) containing leukocyte membrane proteins are also expected to penetrate into tumors by exerting properties of those membrane proteins. The aim of the present study was to examine whether LM-Lipo, which were recently demonstrated to actively pass through inflamed endothelial layers, can penetrate into tumor spheroids, and to investigate the potential of LM-Lipo for use as an anticancer drug carrier. We prepared LM-Lipo via intermembrane protein transfer from human leukemia cells; transfer of leukocyte membrane proteins onto the liposomes was determined by Western blotting. LM-Lipo demonstrated a significantly high association with human lung cancer A549 cells compared with plain liposomes, which contributed to effective anti-proliferative action by encapsulated doxorubicin hydrochloride (DOX). Confocal microscopic images showed that LM-Lipo, but not plain liposomes, could efficiently penetrate into A549 tumor spheroids. Moreover, DOX-encapsulated LM-Lipo significantly suppressed tumor spheroid growth. Thus, leukocyte membrane proteins transferred onto LM-Lipo retained their unique function, which allowed for efficient penetration of the liposomes into tumor spheroids, similar to leukocytes. In conclusion, these results suggest that LM-Lipo could be a useful tumor-penetrating drug delivery system for cancer treatment.


Assuntos
Lipossomos , Neoplasias Pulmonares , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Leucócitos , Neoplasias Pulmonares/tratamento farmacológico
16.
Int J Pharm ; 607: 120966, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34352337

RESUMO

Modification with antibodies is a useful strategy for the delivery of nanoparticles to target cells. However, the complexity of the required chemical modifications makes them time-consuming and low efficiency, and the orientation of the antibody is challenging to control. To develop a simple, fast, effective, and orientation-controllable technology, we employed staphylococcal protein A, which can bind to the Fc region of antibodies, as a tool for conjugating antibodies to nanoparticles. Specifically, we modified the C-domain dimer of protein A to contain a lysine cluster to create a molecule, DPACK, that would electrostatically bind to anionic liposomes. Using this protein, antibody-modified liposomes can be prepared in 35 min with two steps: (1) interaction of DPACK with liposomes and (2) interaction of an antibody with DPACK-modified liposomes. Binding efficiencies of DPACK with liposomes and IgG with DPACK-modified liposomes were 75% and 72-84%, respectively. Uptake of liposomes modified with anti-epidermal growth factor receptor (EGFR) antibodies via DPACK by EGFR-expressing cancer cells was significantly higher than that of unmodified liposomes, and the liposomes accumulated in tumors and colocalized with EGFR. This simple, fast, effective and orientation-controllable technology for preparing antibody-modified liposomes will be useful for active targeting drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Anticorpos , Linhagem Celular Tumoral , Tecnologia
17.
Yakugaku Zasshi ; 140(8): 1007-1012, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741858

RESUMO

We previously showed that increased permeability of the blood-brain barrier (BBB) after ischemic stroke enables extravasation of nano-sized liposomes and accumulation in the ischemic region, and that delivery of neuroprotective agents using liposomal drug delivery systems (DDS) is applicable for treating cerebral ischemia/reperfusion (I/R) injury. However, entry of liposomes into the brain parenchyma was limited in the early stages after I/R possibly due to microvascular dysfunction induced by pathological progression. As such, new approaches to overcome the BBB are needed. Leukocytes can pass through inflamed BBB in I/R region due to membrane proteins displayed on their surface. We thus hypothesized that incorporation of leukocyte membrane proteins onto liposomal membranes would impart leukocyte-mimicking functions to liposomes and that leukocyte-mimetic liposomes (LM-Lipo) may pass through inflamed endothelial cells and BBB, similar to leukocytes. LM-Lipo prepared using intermembrane protein transfer from human leukemia cells showed significantly increased association to inflamed human umbilical vein endothelial cells relative to plain liposomes. Moreover, LM-Lipo passed through inflamed endothelial cell layer by regulating intercellular junctions. These results suggest that imparting leukocyte-like properties to liposomes via intermembrane protein transfer would be an effective strategy to overcome inflamed endothelial barriers. In this review, we describe our findings on ischemic stroke treatment using liposomal DDS and the potential of LM-Lipo to overcome inflamed endothelial barriers.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Leucócitos , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Humanos , Permeabilidade , Transporte Proteico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
18.
Adv Drug Deliv Rev ; 154-155: 227-235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589904

RESUMO

Noninvasive transdermal drug delivery (NTDD) offers an exciting new method of administration relative to conventional routes, but is associated with some challenges. Liposomes are capable of encapsulating transdermally-unfavorable drugs. However, the horny layer of skin is a significant barrier that limits efficient transdermal delivery of liposomes. Iontophoresis using weak electric current (WEC) represents a NTDD technology. WEC treatment of liposomes applied to the skin surface improves transdermal penetration of encapsulated drugs by cooperative effects. In this review, we provide an overview of the application of WEC/liposomes for transdermal delivery of macromolecules and low molecular weight drugs. We compare the transdermal delivery and therapeutic efficiency of the combined system with conventional routes of administration and their individual use. We discuss a novel perspective on the mechanism of WEC-mediated transdermal delivery of liposomes, which suggests that WEC activates the intracellular signaling pathway for transdermal permeation and induces unique endocytosis in skin cells.


Assuntos
Iontoforese , Lipossomos/administração & dosagem , Administração Cutânea , Animais , Humanos , Absorção Cutânea
19.
Biochim Biophys Acta ; 1778(2): 423-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18054323

RESUMO

Mitochondria are the principal producers of energy in higher cells. Mitochondrial dysfunction is implicated in a variety of human diseases, including cancer and neurodegenerative disorders. Effective medical therapies for such diseases will ultimately require targeted delivery of therapeutic proteins or nucleic acids to the mitochondria, which will be achieved through innovations in the nanotechnology of intracellular trafficking. Here we describe a liposome-based carrier that delivers its macromolecular cargo to the mitochondrial interior via membrane fusion. These liposome particles, which we call MITO-Porters, carry octaarginine surface modifications to stimulate their entry into cells as intact vesicles (via macropinocytosis). We identified lipid compositions for the MITO-Porter which promote both its fusion with the mitochondrial membrane and the release of its cargo to the intra-mitochondrial compartment in living cells. Thus, the MITO-Porter holds promise as an efficacious system for the delivery of both large and small therapeutic molecules into mitochondria.


Assuntos
Lipossomos , Fusão de Membrana , Mitocôndrias Hepáticas/metabolismo , Animais , Células HeLa , Humanos , Masculino , Microscopia de Fluorescência , Ratos , Ratos Wistar
20.
BJU Int ; 103(5): 686-93, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19040525

RESUMO

OBJECTIVE: To develop a prototype of a non-live bacterial agent that consists of a cell wall (CW) preparation from heat-killed bacillus Calmette-Guérin (BCG-CW) incorporated into octaarginine-modified cationized liposomes as a vector (R8-liposome-BCG-CW), and to evaluate its immunoprotective potentiation in mice, as although BCG is an established effective immunotherapy for nonmuscle-invasive bladder cancer, more active and less toxic treatments are needed. MATERIALS AND METHODS: The cellular interaction of R8-liposome-BCG-CW co-cultured with mouse bladder cancer cell line (MBT-2) was examined by confocal laser scanning microscopy. MBT-2 cells (7 x 10(5)) were subcutaneously inoculated with 1 mg BCG, 0.1 mg or 1 mg BCG-CW, 0.1 mg or 1 mg R8-liposome-BCG-CW in female C3H/HeN mice. The MBT-2 cells pretreated with BCG or R8-liposome-BCG-CW were re-challenged at 6 weeks. The sizes of the primary and re-challenged tumours were evaluated at 4 and 10 weeks, respectively. RESULTS: Confocal laser scanning microscopy showed the enhanced incorporation of R8-liposome-BCG-CW into MBT-2 cells after 1 h of co-incubation. 0.1 mg R8-liposome-BCG-CW completely inhibited the growth of MBT-2 tumours while 0.1 mg BCG-CW alone did not (P = 0.002). Mice vaccinated with a mixture of MBT-2 cells and R8-liposome-BCG-CW inhibited the growth of re-challenged tumour of MBT-2 cells pretreated with BCG or R8-liposome-BCG-CW but did not inhibit that of MBT-2 cells with no pretreatment at 10 weeks, with mean (sd) tumours sizes of 54 (60) mm(2) (P < 0.001) or 69 (43) mm(2) (P = 0.003) compared with 309 (125) mm(2), respectively. CONCLUSION: The immunotherapeutic potential of BCG-CW was enhanced by improving cellular association using the R8-liposomes delivery system. Development of this non-live bacterial agent may contribute to providing a more active and less toxic tool as a substitute for live BCG as immunotherapy against nonmuscle-invasive bladder cancer in the future.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacina BCG/uso terapêutico , Parede Celular/imunologia , Oligopeptídeos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adjuvantes Imunológicos/efeitos adversos , Animais , Vacina BCG/efeitos adversos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Lipossomos , Camundongos , Camundongos Endogâmicos C3H , Microscopia Confocal , Mycobacterium bovis , Neoplasias da Bexiga Urinária/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA