RESUMO
The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2, and BLH4, that functions in modulating the demethylesterification of homogalacturonan in seed coat mucilage.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Pectinas , Mucilagem Vegetal , Sementes , Fatores de Transcrição , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pectinas/metabolismo , Sementes/metabolismo , Sementes/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mucilagem Vegetal/metabolismo , Esterificação , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , MutaçãoRESUMO
The mucilage surrounding hydrated Arabidopsis thaliana seeds is a specialized extracellular matrix composed mainly of the pectic polysaccharide rhamnogalacturonan I (RG-I). Although, several genes responsible for RG-I biosynthesis have been identified, the transcriptional regulatory mechanisms controlling RG-I production remain largely unknown. Here we report that the trihelix transcription factor DE1 BINDING FACTOR 1 (DF1) is a key regulator of mucilage RG-I biosynthesis. RG-I biosynthesis is significantly reduced in loss-of-function mutants of DF1. DF1 physically interacts with GLABRA2 (GL2) and both proteins transcriptionally regulate the expression of the RG-I biosynthesis genes MUCILAGE MODIFIED 4 (MUM4) and GALACTURONOSYLTRANSFERASE-LIKE5 (GATL5). Through chromatin immunoprecipitation-quantitative PCR and transcriptional activation assays, we uncover a cooperative mechanism of the DF1-GL2 module in activating MUM4 and GATL5 expression, in which DF1 binds to the promoters of MUM4 and GATL5 through interacting with GL2 and facilitates the transcriptional activity of GL2. The expression of DF1 and GL2 is directly regulated by TRANSPARENT TESTA GLABRA2 (TTG2) and, in turn, DF1 directly represses the expression of TTG2. Taken together, our data reveal that the transcriptional regulation of mucilage RG-I biosynthesis involves a regulatory module, comprising DF1, GL2, and TTG2.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas , Mucilagem Vegetal/metabolismo , Polissacarídeos/metabolismo , Sementes/genética , Sementes/metabolismoRESUMO
CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.
Assuntos
Sistemas CRISPR-Cas , Lignina , Nicotiana , Pectinas , Lignina/metabolismo , Lignina/biossíntese , Nicotiana/genética , Nicotiana/metabolismo , Pectinas/metabolismo , Pectinas/genética , Edição de Genes/métodos , Transformação Genética , Plantas Geneticamente Modificadas/genéticaRESUMO
Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Proteínas Repressoras/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Adesividade , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Reagentes de Ligações Cruzadas/química , Esterificação , Genes de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Ligação Proteica , Proteínas Repressoras/genéticaRESUMO
Enhancing stalk strength is a crucial strategy to reduce lodging. We identified a maize inbred line, QY1, with superior stalk mechanical strength. Comprehensive analyses of the microstructure, cell wall composition, and transcriptome of QY1 were performed to elucidate the underlying factors contributing to its increased strength. Notably, both the vascular bundle area and the thickness of the sclerenchyma cell walls in QY1 were significantly increased. Furthermore, analyses of cell wall components revealed a significant increase in cellulose content and a notable reduction in lignin content. RNA sequencing (RNA-seq) revealed changes in the expression of numerous genes involved in cell wall synthesis and modification, especially those encoding pectin methylesterase (PME). Variations in PME activity and the degree of methylesterification were noted. Additionally, glycolytic efficiency in QY1 was significantly enhanced. These findings indicate that QY1 could be a valuable resource for the development of maize varieties with enhanced stalk mechanical strength and for biofuel production.
Assuntos
Hidrolases de Éster Carboxílico , Parede Celular , Regulação da Expressão Gênica de Plantas , Caules de Planta , Zea mays , Zea mays/genética , Zea mays/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Caules de Planta/metabolismo , Caules de Planta/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Celulose/metabolismo , TranscriptomaRESUMO
Numerous proteins involved in cellulose biosynthesis and assembly have been functionally characterized. Nevertheless, we have a limited understanding of the mechanisms underlying the transcriptional regulation of the genes that encode these proteins. Here, we report that HOMEODOMAIN GLABROUS2 (HDG2), a Homeobox-Leucine Zipper IV transcription factor, regulates cellulose biosynthesis in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. HDG2 is a transcriptional activator with the transactivation domain located within its Leucine-Zipper domain. Transcripts of HDG2 were detected specifically in seed coat epidermal cells with peak expression at 10 d postanthesis. Disruptions of HDG2 led to seed coat mucilage with aberrant morphology due to a reduction in its crystalline cellulose content. Electrophoretic mobility shift and yeast one-hybrid assays, together with chromatin immunoprecipitation and quantitative PCR, provided evidence that HDG2 directly activates CELLULOSE SYNTHASE5 (CESA5) expression by binding to the L1-box cis-acting element in its promoter. Overexpression of CESA5 partially rescued the mucilage defects of hdg2-3. Together, our data suggest that HDG2 directly activates CESA5 expression and thus is a positive regulator of cellulose biosynthesis in seed coat mucilage.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Celulose/biossíntese , Celulose/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
As a major hemicellulose component of plant cell walls, xylans play a determining role in maintaining the wall structure. However, the mechanisms of transcriptional regulation of xylan biosynthesis remain largely unknown. Arabidopsis seed mucilage represents an ideal system for studying polysaccharide biosynthesis and modifications of plant cell walls. Here, we identify KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7) as a positive transcriptional regulator of xylan biosynthesis in seed mucilage. The xylan content was significantly reduced in the mucilage of the knat7-3 mutant and this was accompanied by significantly reduced expression of the xylan biosynthesis-related genes IRREGULAR XYLEM 14 (IRX14) and MUCILAGE MODIFIED 5/MUCILAGE-RELATED 21 (MUM5/MUCI21). Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation with quantitative PCR verified the direct binding of KNAT7 to the KNOTTED1 (KN1) binding site [KBS,TGACAG(G/C)T] in the promoters of IRX7, IRX14, and MUM5/MUCI21 in vitro, in vivo, and in planta. Furthermore, KNAT7 directly activated the expression of IRX14 and MUM5/MUCI21 in transactivation assays in mesophyll protoplasts, and overexpression of IRX14 or MUM5/MUCI21 in knat7-3 partially rescued the defects in mucilage adherence. Taken together, our results indicate that KNAT7 positively regulates xylan biosynthesis in seed-coat mucilage via direct activation of the expression of IRX14 and MUM5/MUCI21.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Mucilagem Vegetal/metabolismo , Polissacarídeos , Proteínas Repressoras/metabolismo , Sementes/metabolismo , XilanosRESUMO
KEY MESSAGE: A possible transcription factor TLP2 was identified to be involved in the regulation of HG biosynthesis in Arabidopsis seed mucilage. TLP2 can translocate into nucleus from plasma membrane by interacting with NF-YC3. The discovery of TLP2 gene function can further fulfill the regulatory network of pectin biosynthesis in Arabidopsis thaliana. Arabidopsis seed coat mucilage is an excellent model system to study the biosynthesis, function and regulation of pectin. Rhamnogalacturonan I (RG-I) and homogalacturonan (HG) are the major polysaccharides constituent of the Arabidopsis seed coat mucilage. Here, we identified a Tubby-like gene, Tubby-like protein 2 (TLP2), which was up-regulated in developing siliques when mucilage began to be produced. Ruthenium red (RR) staining of the seeds showed defective mucilage of tlp2-1 mutant after vigorous shaking compared to wild type (WT). Monosaccharide composition analysis revealed that the amount of total sugars and galacturonic acid (GalA) decreased significantly in the adherent mucilage (AM) of tlp2-1 mutant. Immunolabelling and dot immunoblotting analysis showed that unesterified HG decreased in the tlp2-1 mutant. Furthermore, TLP2 can translocate into nucleus by interacting with Nuclear Factor Y subunit C3 (NF-YC3) to function as a transcription factor. RNA-sequence and transactivation assays revealed that TLP2 could activate UDP-glucose 4-epimerase 1 (UGE1). In all, it is concluded that TLP2 could regulate the biosynthesis of HG possibly through the positive activation of UGE1.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pectinas/biossíntese , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Hexurônicos , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Polissacarídeos , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Fatores de Transcrição , Ativação Transcricional , Uridina Difosfato Glucose Desidrogenase/metabolismoRESUMO
Pectin, which is a major component of the plant primary cell walls, is synthesized and methyl-esterified in the Golgi apparatus and then demethylesterified by pectin methylesterases (PMEs) located in the cell wall. The degree of methylesterification affects the functional properties of pectin, and thereby influences plant growth, development and defense. However, little is known about the mechanisms that regulate pectin demethylesterification. Here, we show that in Arabidopsis (Arabidopsis thaliana) seed coat mucilage, the absence of the MYB52 transcription factor is correlated with an increase in PME activity and a decrease in the degree of pectin methylesterification. Decreased methylesterification in the myb52 mutant is also correlated with an increase in the calcium content of the seed mucilage. Chromatin immunoprecipitation analysis and molecular genetic studies suggest that MYB52 transcriptionally activates PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), PMEI14, and SUBTILISIN-LIKE SER PROTEASE1.7 (SBT1.7) by binding to their promoters. PMEI6 and SBT1.7 have previously been shown to be involved in seed coat mucilage demethylesterification. Our characterization of two PMEI14 mutants suggests that PMEI14 has a role in seed coat mucilage demethylesterification, although its activity may be confined to the seed coat in contrast to PMEI6, which functions in the whole seed. Our demonstration that MYB52 negatively regulates pectin demethylesterification in seed coat mucilage, and the identification of components of the molecular network involved, provides new insight into the regulatory mechanism controlling pectin demethylesterification and increases our understanding of the transcriptional regulation network involved in seed coat mucilage formation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Esterificação , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sementes/genéticaRESUMO
The structure of a pectin network requires both calcium (Ca2+) and boron (B). Ca2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an "egg-box" structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca2+is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca2+in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca2+. Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca2+to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.
Assuntos
Arabidopsis/fisiologia , Boro/química , Cálcio/fisiologia , Mucilagem Vegetal/química , Polissacarídeos/metabolismo , Sementes/fisiologia , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/química , Regulação da Expressão Gênica de Plantas/fisiologia , Polissacarídeos/químicaRESUMO
Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7 was expressed in the seeds from 4 days post-anthesis (DPA) to 13 DPA, with the peak of expression at 13 DPA. The seed coat epidermis cells of irx7 displayed no aberrant morphology during differentiation, and these cells synthesized and deposited the same amount of mucilage as did wild type (WT) cells. However, the distribution of the water-soluble vs. adherent mucilage layers was significantly altered in irx7 compared to the WT. Both the amount of xylose and the extent of glycosyl linkages of xylan was dramatically decreased in irx7 water-soluble and adherent mucilage compared to the WT. The polymeric structure of water-soluble mucilage was altered in irx7, with a total loss of the higher molecular weight polymer components present in the WT. Correspondingly, whole-seed immunolabeling assays and dot-immunoassays of extracted mucilage indicated dramatic changes in rhamnogalacturonan I (RG I) and xylan epitopes in irx7 mucilage. Furthermore, the crystalline cellulose content was significantly reduced in irx7 mucilage. Taken together, these results indicate that xylan synthesized by IRX7 plays an essential role in maintaining the adhesive property of seed coat mucilage, and its structural role is potentially implemented through its interaction with cellulose.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Sementes/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismoRESUMO
During differentiation, the Arabidopsis seed coat epidermal cells synthesize and secrete large quantities of pectinaceous mucilage into the apoplast, which is then released to encapsulate the seed upon imbibition. In this study, we showed that mutation in Irregular Xylem 14 (IRX14) led to a mucilage cohesiveness defect due to a reduced xylan content. Expression of IRX14 was detected specifically in the seed coat epidermal cells, reaching peak expression at 13 days post-anthesis (DPA) when the accumulation of mucilage polysaccharides has ceased. Sectioning of the irx14-1 seed coat revealed no visible structural change in mucilage secretory cell morphology. Although the total amount of mucilage was comparable with the wild type (WT), the partition between water-soluble and adherent layers was significantly altered in irx14-1, with redistribution from the adherent layer to the water-soluble layer. The monosaccharide composition analysis revealed that xylose content was significantly reduced in irx14-1 water-soluble and adherent mucilage compared with the WT. The macromolecular characteristics of the water-soluble mucilage were modified in irx14-1 with a loss of the larger polymeric components. In accordance, glycome profiling and dot immunoblotting of seed mucilage using antibodies specific for rhamnogalacturonan I (RG I) and xylan confirmed the ultra-structural alterations in the irx14-1 mucilage. Meanwhile, the crystalline cellulose content was reduced in the irx14-1 mucilage. These results demonstrated that IRX14 was required for the biosynthesis of seed mucilage xylan, which plays an essential role in maintaining mucilage architecture potentially through altering the crystallization and organization of cellulose.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pentosiltransferases/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/anatomia & histologia , Sementes/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulose/metabolismo , Cristalização , Regulação da Expressão Gênica de Plantas , Immunoblotting , Substâncias Macromoleculares/metabolismo , Mutação/genética , Pentosiltransferases/genética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Xilose/metabolismoRESUMO
Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-ß-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Mananas/biossíntese , Mucilagem Vegetal/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulose/metabolismo , Cristalização , Regulação da Expressão Gênica de Plantas , Ligação Genética , Glucosiltransferases/genética , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Pectinas/metabolismo , Mucilagem Vegetal/ultraestrutura , Transporte Proteico , Sementes/ultraestrutura , Frações Subcelulares/enzimologiaRESUMO
KEY MESSAGE: Two 2-phenylethanol biosynthetic pathways were constructed into Arabidopsis ; 2-phenylethanol biosynthesis led to reduced rate of lignin biosynthesis and increased cellulose-to-glucose conversion in the transgenic plants. Lignin is the second most abundant biopolymer on the planet with importance for various agro-industrial activities. The presence of lignin in cell walls, however, impedes biofuel production from lignocellulosic biomass. The phenylpropanoid pathway is responsible for the biosynthesis of lignin and other phenolic metabolites such as 2-phenylethanol. As one of the most used fragrance chemicals, 2-phenylethanol is synthesized in plants from L-phenylalanine which is the first specific intermediate towards lignin biosynthesis. Thus, it is interesting to prove the concept that the phenylpropanoid pathway can be modulated for reduction of lignin as well as production of natural value-added compounds. Here we conferred two 2-phenylethanol biosynthetic pathways constructed from plants and Saccharomyces cerevisiae into Arabidopsis. As anticipated, 2-phenylethanol was accumulated in transgenic plants. Moreover, the transformants showed 12-14% reduction in lignin content and 9-13% increase in cellulose content. Consequently, the glucose yield from cell wall hydrolysis was increased from 37.4% in wild type to 49.9-52.1% in transgenic plants with hot water pretreatment. The transgenic plants had normal development and even enhanced growth relative to the wild type. Our results indicate that the shunt of L-phenylalanine flux to the artificially constructed 2-phenylethanol biosynthetic pathway most likely reduced the rate of lignin biosynthesis in Arabidopsis.
Assuntos
Arabidopsis/metabolismo , Lignina/biossíntese , Álcool Feniletílico/metabolismo , Arabidopsis/química , Arabidopsis/genética , Parede Celular/química , Celulose/análise , Engenharia Genética/métodos , Lignina/análise , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Petunia/genética , Petunia/metabolismo , Álcool Feniletílico/análise , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
Wood biomass is mainly made of secondary cell walls, whose formation is controlled by a multilevel network. The tandem CCCH zinc finger (TZF) proteins involved in plant secondary wall formation are poorly understood. Two TZF genes, PdC3H17 and PdC3H18, were isolated from Populus deltoides and functionally characterized in Escherichia coli, tobacco, Arabidopsis and poplar. PdC3H17 and PdC3H18 are predominantly expressed in cells of developing wood, and the proteins they encode are targeted to cytoplasmic foci. Transcriptional activation assays showed that PdMYB2/3/20/21 individually activated the PdC3H17 and PdC3H18 promoters, but PdMYB3/21 were most significant. Electrophoretic mobility shift assays revealed that PdMYB3/21 bound directly to the PdC3H17/18 promoters. Overexpression of PdC3H17/18 in poplar increased secondary xylem width and secondary wall thickening in stems, whereas dominant repressors of them had the opposite effects on these traits. Similar alteration in secondary wall thickening was observed in their transgenic Arabidopsis plants. qRT-PCR results showed that PdC3H17/18 regulated the expression of cellulose, xylan and lignin biosynthetic genes, and several wood-associated MYB genes. These results demonstrate that PdC3H17 and PdC3H18 are the targets of PdMYB3 and PdMYB21 and are an additional two components in the regulatory network of secondary xylem formation in poplar.
Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Populus/citologia , Populus/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Lignina/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Madeira/citologia , Madeira/metabolismo , Xilema/metabolismo , Dedos de ZincoRESUMO
The function of a putative galacturonosyltransferase from Arabidopsis (Arabidopsis thaliana; At1g02720; GALACTURONOSYLTRANSFERASE-LIKE5 [AtGATL5]) was studied using a combination of molecular genetic, chemical, and immunological approaches. AtGATL5 is expressed in all plant tissues, with highest expression levels in siliques 7 DPA. Furthermore, its expression is positively regulated by several transcription factors that are known to regulate seed coat mucilage production. AtGATL5 is localized in both endoplasmic reticulum and Golgi, in comparison with marker proteins resident to these subcellular compartments. A transfer DNA insertion in the AtGATL5 gene generates seed coat epidermal cell defects both in mucilage synthesis and cell adhesion. Transformation of atgatl5-1 mutants with the wild-type AtGATL5 gene results in the complementation of all morphological phenotypes. Compositional analyses of the mucilage isolated from the atgatl5-1 mutant demonstrated that galacturonic acid and rhamnose contents are decreased significantly in atgatl5-1 compared with wild-type mucilage. No changes in structure were observed between soluble mucilage isolated from wild-type and mutant seeds, except that the molecular weight of the mutant mucilage increased 63% compared with that of the wild type. These data provide evidence that AtGATL5 might function in the regulation of the final size of the mucilage rhamnogalacturonan I.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Hexurônicos/metabolismo , Hibridização In Situ , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Pectinas/metabolismo , Mucilagem Vegetal/análise , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ramnose/metabolismo , Sementes/genética , Sementes/ultraestrutura , TranscriptomaRESUMO
KEY MESSAGE: Cell wall polysaccharides' occurrences in two internodes of different development stages in M. lutarioriparius stem were analyzed and three major differences between them were identified by cell wall polysaccharide probes. Deposition and modification of cell wall polysaccharides during stem development affect biomass yield of the Miscanthus energy crop. The distribution patterns of cell wall polysaccharides in the 2nd and the 11th internodes of M. lutarioriparius stem were studied using in situ immunofluorescence assay. Crystalline cellulose and xylan were present in most of the stem tissues except phloem, where xyloglucan was the major composition of hemicellulose. The distribution of pectin polysaccharides varied in stem tissues, particularly in vascular bundle elements. Xylogalacturonan, feruloylated-1,4-ß-D-galactan and (1,3)(1,4)-ß-glucans, however, were insufficient for antibodies binding in both internodes. Furthermore, the distribution of cell wall polysaccharides was differentiated in the two internodes of M. lutarioriparius. The significant differences in the pattern of occurrence of long 1,5-α-L-arabinan chain, homogalacturonan and fucosylated xyloglucans epitope were detected between the two internodes. In addition, the relationships between probable functions of polysaccharides and their distribution patterns in M. lutarioriparius stem cell wall were discussed, which would be helpful to understand the growth characteristics of Miscanthus and identify potential targets for either modification or degradation.
Assuntos
Parede Celular/metabolismo , Imunofluorescência/métodos , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Caules de Planta/anatomia & histologia , Poaceae/citologiaRESUMO
Pectin is one of the major components of plant primary cell wall polysaccharides. The degree of pectin methylesterification (DM) plays an important role in the process of plant growth. However, little is known about the underlying regulatory mechanisms during the process of pectin demethylesterification. Here, we characterized mucilage defect 1 (mud1), a novel Arabidopsis thaliana mutant, which displays increased mucilage adherence resulting from increased activities of pectin methylesterases (PMEs) and decreased degree of pectin methylesterification (DM). MUD1 encodes a nuclear protein with a Really Interesting New Gene (RING)-v domain and is highly expressed in developing seed coat when seed coat mucilage starts to accumulate. We have demonstrated that MUD1 has E3 ubiquitin ligase activity in vitro. The expression of PME-related genes, including MYB52, LUH, SBT1.7, PMEI6, and PMEI14 decreased considerably in mud1. We propose that MUD1 acts as an ubiquitin ligase potentially regulating the DM of pectin by post-transcriptionally removing proteins that normally negatively regulate the level or activity of PMEs in the seed coat mucilage.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline ß-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.