Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 18(12): 5112-5122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555215

RESUMO

Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non-autolytic and exhibits lysozyme-mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell-free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell-free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/enzimologia , Muramidase/metabolismo , Ruminococcus/enzimologia , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Celulose/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , Humanos , Muramidase/genética , Ruminococcus/genética , Ruminococcus/metabolismo
2.
Environ Microbiol ; 18(2): 542-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26347002

RESUMO

Ruminococcus champanellensis is considered a keystone species in the human gut that degrades microcrystalline cellulose efficiently and contains the genetic elements necessary for cellulosome production. The basic elements of its cellulosome architecture, mainly cohesin and dockerin modules from scaffoldins and enzyme-borne dockerins, have been characterized recently. In this study, we cloned, expressed and characterized all of the glycoside hydrolases that contain a dockerin module. Among the 25 enzymes, 10 cellulases, 4 xylanases, 3 mannanases, 2 xyloglucanases, 2 arabinofuranosidases, 2 arabinanases and one ß-glucanase were assessed for their comparative enzymatic activity on their respective substrates. The dockerin specificities of the enzymes were examined by ELISA, and 80 positives out of 525 possible interactions were detected. Our analysis reveals a fine-tuned system for cohesin-dockerin specificity and the importance of diversity among the cohesin-dockerin sequences. Our results imply that cohesin-dockerin pairs are not necessarily assembled at random among the same specificity types, as generally believed for other cellulosome-producing bacteria, but reveal a more organized cellulosome architecture. Moreover, our results highlight the importance of the cellulosome paradigm for cellulose and hemicellulose degradation by R. champanellensis in the human gut.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulose/metabolismo , Celulossomas/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Microbioma Gastrointestinal/fisiologia , Ruminococcus/enzimologia , Glicosídeo Hidrolases/metabolismo , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Ruminococcus/genética , Coesinas
3.
Environ Microbiol ; 17(9): 3407-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25845888

RESUMO

A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Celulose/metabolismo , Celulossomas/genética , Proteínas Cromossômicas não Histona/genética , Complexos Multienzimáticos/genética , Rúmen/microbiologia , Ruminococcus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/classificação , Sequência de Bases , Bovinos , Proteínas de Ciclo Celular/classificação , Proteínas Cromossômicas não Histona/classificação , DNA Bacteriano/genética , Fezes/microbiologia , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Família Multigênica/genética , Filogenia , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Análise de Sequência de DNA , Coesinas
4.
Appl Microbiol Biotechnol ; 99(15): 6339-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846333

RESUMO

Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, employs a novel collection of cell-associated proteins to digest crystalline cellulose. Other Bacteroidetes rely on cell surface proteins related to the starch utilization system (Sus) proteins SusC and SusD to bind oligosaccharides and import them across the outer membrane for further digestion. These bacteria typically produce dozens of SusC-like porins and SusD-like oligosaccharide-binding proteins to facilitate utilization of diverse polysaccharides. C. hutchinsonii specializes in cellulose digestion and its genome has only two susC-like genes and two susD-like genes. Single and multiple gene deletions were constructed to determine if the susC-like and susD-like genes have roles in cellulose utilization. A mutant lacking all susC-like and all susD-like genes digested cellulose and grew on cellulose as well as wild-type cells. Further, recombinantly expressed SusD-like proteins CHU_0547 and CHU_0554 failed to bind cellulose or ß-glucan hemicellulosic polysaccharides. The results suggest that the Bacteroidetes Sus paradigm for polysaccharide utilization may not apply to the cellulolytic bacterium C. hutchinsonii.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Celulose/metabolismo , Cytophaga/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Biotransformação , Cytophaga/genética , Cytophaga/crescimento & desenvolvimento , Deleção de Genes
5.
J Biol Chem ; 284(37): 24673-7, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19553672

RESUMO

Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.


Assuntos
Bacteroidetes/metabolismo , Intestinos/microbiologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Catálise , Celulose/química , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Modelos Genéticos , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA