Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nanomedicine ; 19: 71-80, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004812

RESUMO

Low tumor specificity and multidrug resistance (MDR) remain challenging for many anticancer drugs. In this study, the micelles assembled by a matrix metalloproteinase 2 (MMP2)-sensitive self-assembling efflux inhibitor (PEG2k-pp-PE) were developed and evaluated in various cancer models. In vitro, the PEG2k-pp-PE micelles enhanced the cellular uptake and tissue penetration and sensitized the cancers to drug treatments in MDR cancer cells and their three-dimensional multicellular spheroids. Their efflux inhibitory capability was comparable to those of the well-known small-molecule P-glycoprotein (P-gp) inhibitor and polymeric P-gp inhibitor. In vivo, the PEG2k-pp-PE micelles could specifically and effectively deliver the loaded cargoes to the tumor, as evidenced by the enhanced drug accumulation and prolonged drug retention in the tumor tissue, resulting in the improved anticancer activity. Our results suggest that the PEG2k-pp-PE micelles may have great potential to be a simple but multifunctional nanocarrier for concurrent tumor-targeted drug delivery and sensitization of resistant cancers.


Assuntos
Sistemas de Liberação de Medicamentos , Metaloproteinase 2 da Matriz/metabolismo , Micelas , Neoplasias/tratamento farmacológico , Polímeros/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Concentração Inibidora 50 , Camundongos , Neoplasias/patologia , Esferoides Celulares/metabolismo , Distribuição Tecidual
2.
Biomacromolecules ; 16(4): 1179-90, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25714622

RESUMO

To improve the bioavailability of orally administered drugs, we synthesized a pH-sensitive polymer (poly(ethylene glycol)-poly(2-methyl-2-carboxyl-propylene carbonate)-vitamin E, mPEG-PCC-VE) attempting to integrate the advantages of enteric coating and P-glycoprotein (P-gp) inhibition. The aliphatic polycarbonate chain was functionalized with carboxyl groups and vitamin E via postpolymerization modification. Optimized by comparison and central composite design, mPEG113-PCC32-VE4 exhibited low critical micelle concentration of 1.7 × 10(-6) mg/mL and high drug loading ability for tacrolimus (21.2% ± 2.7%, w/w). The pH-responsive profile was demonstrated by pH-dependent swelling and in vitro drug release. Less than 4.0% tacrolimus was released under simulated gastric fluid after 2.5 h, whereas an immediate release was observed under simulated intestinal fluid. The mPEG113-PCC32-VE4 micelles significantly increased the absorption of P-gp substrate tacrolimus in the whole intestine. The oral bioavailability of tacrolimus micelles was 6-fold higher than that of tacrolimus solution in rats. This enteric polymer therefore has the potential to become a useful nanoscale carrier for oral delivery of drugs.


Assuntos
Portadores de Fármacos/síntese química , Micelas , Cimento de Policarboxilato/química , Polietilenoglicóis/química , Tacrolimo/administração & dosagem , Vitamina E/química , Administração Oral , Animais , Portadores de Fármacos/farmacocinética , Concentração de Íons de Hidrogênio , Absorção Intestinal , Ratos , Ratos Sprague-Dawley , Tacrolimo/farmacocinética , Distribuição Tecidual
3.
Biomater Sci ; 12(4): 821-836, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168805

RESUMO

Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Neovascularização Fisiológica
4.
Int J Biol Macromol ; 261(Pt 1): 129704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272431

RESUMO

Chronic diabetic wounds pose a serious threat to human health and safety because of their refractory nature and high recurrence rates. The formation of refractory wounds is associated with wound microenvironmental factors such as increased expression of proinflammatory factors and oxidative stress. Bilirubin is a potent endogenous antioxidant, and morin is a naturally active substance that possesses anti-inflammatory and antioxidant effects. Both hold the potential for diabetic wound treatment by intervening in pathological processes. In this study, we developed bilirubin/morin-based carrier-free nanoparticles (BMn) to treat chronic diabetic wounds. In vitro studies showed that BMn could effectively scavenge overproduced reactive oxygen species and suppress elevated inflammation, thereby exerting a protective effect. BMn was then loaded into a collagen/polyvinyl alcohol gel (BMn@G) for an in vivo study to maintain a moist environment for the skin and convenient biomedical applications. BMn@G exhibits excellent mechanical properties, water retention capabilities, and in vivo safety. In type I diabetic mice, BMn@G elevated the expression of the anti-inflammatory factor IL-10 and concurrently diminished the expression of the proinflammatory factor TNF-α in the tissues surrounding the wounds. Furthermore, BMn@G efficiently mediated macrophage polarization from the M1-type to the M2-type, thereby fostering anti-inflammatory effects. Additionally, BMn@G facilitated the conversion of type III collagen fiber bundles to type I collagen fiber bundles, resulting in a more mature collagen fiber structure. This study provides a promising therapeutic alternative for diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus , Flavonas , Nanopartículas , Camundongos , Humanos , Animais , Álcool de Polivinil/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Bilirrubina/metabolismo , Cicatrização , Colágeno/química , Inflamação/patologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/uso terapêutico , Estresse Oxidativo , Hidrogéis/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
5.
Front Immunol ; 13: 923241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903090

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing ß cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Animais , Materiais Biocompatíveis/metabolismo , Transplante das Ilhotas Pancreáticas/efeitos adversos , Estresse Oxidativo
6.
Colloids Surf B Biointerfaces ; 193: 111109, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416521

RESUMO

Chemotherapy is one of the most potent strategies to treat gastric cancer in clinic. However, the resistance of cancer cells to chemotherapeutics is a remarkable impediment to the treatment. Moreover, signal transducer and activator of transcription 3 (STAT3) is a critical transcriptional factor that over-activated in gastric cancer, and highly involved in the induction of chemoresistance. In this study, we developed poly (lactic-co-glycolic acid) (PLGA) nanoparticles to achieve the simultaneous codelivery of doxorubicin (DOX) and nifuratel (NIF, a novel STAT3 inhibitor) for enhanced cancer therapy. The synergistic effect of DOX and NIF against cancer cells was evaluated in gastric cancer cells. PLGA nanoparticles with an optimal ratio of DOX and NIF (DNNPs) were prepared and characterized. The cellular uptake and anticancer effects of DNNPs were investigated, and the underlying mechanisms were further explored. DNNPs presented as a spherical shape, provided sustained release profiles, and exhibited significantly increased uptake and cytotoxicity in gastric cancer cells. Mechanism studies showed that DNNPs significantly induced mitochondrial-dependent apoptosis and inhibited STAT3 phosphorylation, explaining the enhanced anticancer effect. These results suggested that DNNPs represented a promising strategy against gastric cancer by inhibiting the STAT3 pathway and amplifying apoptosis.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas/química , Nifuratel/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fator de Transcrição STAT3/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Propriedades de Superfície , Cicatrização/efeitos dos fármacos
7.
ACS Appl Mater Interfaces ; 12(27): 30031-30043, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459093

RESUMO

Tumor cells usually display metabolic, genetic, and microenvironment-related alterations, which are beneficial to tumor proliferation, tumor development, and resistance occurrence. Many transporters and enzymes, including ATB0,+, xCT, and matrix metalloproteinases (MMPs), are involved in the altered cell metabolism and tumor microenvironment and often abnormally upregulated in malignant tumors. Meanwhile, these dysregulated transporters and enzymes provide targets not only for a pharmacological blockage to suppress tumor progress but also for tumor-specific delivery. Although transporters and MMPs have been widely reported for antitumor drug delivery, the feasibility of utilizing two strategies has never been elucidated yet. Herein, we developed an MMP2-activated and ATB0,+-targeted liposome with doxorubicin and sorafenib (DS@MA-LS) loaded for optimal tumor drug delivery for cancer therapy. DS@MA-LS was designed to prolong blood circulation and deshield the PEG shell from MMP2 cleavage to expose lysine and target overexpressed ATB0,+ for enhanced tumor distribution and cancer cellular uptake. Besides the anticancer effects of loaded drugs, the endocytosed liposomes could further increase ROS production and suppress the antioxidant system to amplify oxidative stress. As expected, DS@MA-LS displayed enhanced targeted drug delivery to tumor sites with the MMP2-controlled ligand exposure and ATB0,+-mediated uptake. More importantly, DS@MA-LS successfully inhibited the tumor growth and cancer cell proliferation both in vitro and in vivo by enhancing apoptosis and ferroptosis, which thanks to the increased ROS generation and impaired GSH synthesis synergistically amplified oxidative stress. Our results suggested that the tumor microenvironment-responsive, multistaged nanoplatform, DS@MA-LS, has excellent potential for optimal drug delivery and enhanced cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lipossomos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Lipossomos/química , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/química , Sorafenibe/farmacologia
8.
Expert Opin Drug Deliv ; 17(3): 395-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990587

RESUMO

Background: SLC6A14 (ATB0,+), a Na+/Cl-coupled transporter for neutral/cationic amino acids, is overexpressed in many cancers; It has been investigated as a target for improved liposomal drug delivery to treat liver cancer.Research design and methods: Here we explored the mechanism of ATB0,+-mediated entry of such liposomes. As ATB0,+ is highly expressed in pancreatic cancer, we also examined the therapeutic utility of ATB0,+-targeted liposomal drug delivery to treat this cancer.Results: The uptake of lysine-conjugated liposomes (LYS-LPs) was greater in ATB0,+-positive MCF7 cells. The uptake process consisted of two steps: binding and internalization. The binding of LYS-LPs to MCF7 cells was higher than that of bare liposomes, and the process was dependent on Na+ and Cl-, and inhibitable by ATB0,+ substrates or blocker. In contrast, the internalization step was independent of lysine. The cellular entry of LYS-LPs facilitated by ATB0,+ occurred via endocytosis with transient endosomal degradation of ATB0,+ protein with subsequent recovery. Moreover, LYS-LPs also enhanced the uptake and cytotoxicity of gemcitabine in these cells in an ATB0,+-dependent manner.Conclusions: We conclude that ATB0,+ could be exploited for targeted drug delivery in the form of lysine-conjugated liposomes and that the approach represents a novel strategy for enhanced pancreatic cancer therapy.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose , Neoplasias Pancreáticas/tratamento farmacológico , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Lipossomos , Células MCF-7
9.
Drug Deliv ; 27(1): 170-179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31913724

RESUMO

Targeted nanocarriers have shown great promise in drug delivery because of optimized drug behavior and improved therapeutic efficacy. How to improve the targeting efficiency of nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on enterocytes for improved oral absorption. As a variable, we introduced various lengths of the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and consequently for more efficient interaction with the transporter, to enhance the oral delivery of the cargo load into cells. An increased absorption was observed in cellular uptake in vitro and in intestinal perfusion assay in situ when the polyethylene glycol was introduced to link L-carnitine to the nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker decreased the absorption efficiency in vivo. As the presence or absence of the mucus layer was the primary difference between in vitro/in situ versus in vivo, the presence of this layer was the likely reason for this differential effect. In summary, the size of the polyethylene glycol linker improved the absorption in vitro and in situ, but interfered with the absorption in vivo. Even though this strategy of increasing the ligand flexibility with the variable size of the polyethylene glycol failed to increase oral absorption in vivo, this approach is likely to be useful for enhanced cellular uptake following intravenous administration of the nanocarriers.


Assuntos
Carnitina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto/efeitos dos fármacos , Administração Oral , Animais , Células CACO-2 , Carnitina/administração & dosagem , Carnitina/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Enterócitos , Humanos , Masculino , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
10.
Eur J Pharm Sci ; 148: 105316, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32201342

RESUMO

Intrauterine adhesion (IUA) is characterized by endometrial stromal replaced with fibrous tissue during the trauma or operation induced injury. Current clinic IUA management mainly involves surgical removal of the connective tissues and physical separation and often results in reoccurrence. It is of clinic interest to directly address the issue via facilitating the endometrial repair and thereby inhibiting the formation of re-adhesion. To this end, we designed a nanocomposite aloe/poloxamer hydrogel for ß-estradiol (E2) intrauterine delivery to exert multi-therapeutic effects and promote endometrial regeneration for IUA treatment. Nanoparticulate decellularized uterus (uECMNPs) was prepared to encapsulate E2 (E2@uECMNPs), which improved the solubility and prolonged cargo release. Then, E2@uECMNPs were further embedded into the thermosensitive aloe-poloxamer hydrogel (E2@uECMNPs/AP). Multiple components from E2@uECMNPs/AP system could collectively promote proliferation and inhibit apoptosis of endometrial stromal cells. E2@uECMNPs/AP significantly increased morphological recovery and decreased uterine fibrosis rate compared with IUA rats in other groups in vivo. Additionally, the levels of Ki67, cytokeratin, and estrogen receptor ß were all up-regulated, along with the decreased expression of TGF-ß1 and TNF-α in the uterus from rats receiving E2@uECMNPs/AP therapy. Taken together, in situ administration of E2@uECMNPs/AP hydrogel could effectively promote endometrial regeneration and prevent the re-adhesion.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endométrio/efeitos dos fármacos , Estradiol/farmacologia , Hidrogéis , Regeneração/efeitos dos fármacos , Aloe , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/metabolismo , Citocinas/metabolismo , Portadores de Fármacos , Estradiol/metabolismo , Feminino , Humanos , Poloxâmero , Ratos , Aderências Teciduais , Útero/metabolismo , Cicatrização
11.
ACS Appl Mater Interfaces ; 12(5): 5462-5475, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927945

RESUMO

Islet transplantation has been considered the most promising therapeutic option with the potential to restore the physiological regulation of blood glucose concentrations in type 1 diabetes treatment. However, islets suffer from oxidative stress and nonspecific inflammation in the early stage of transplantation, which attributed to the leading cause of islet graft failure. Our previous study reported that bilirubin exerted antioxidative and anti-inflammatory effects on hypothermic preserved islets, which inspire us to utilize bilirubin to address the survival issue of grafted islets. However, the application of bilirubin for islet transplantation is limited by its poor solubility and fast clearance. In this study, we designed a supramolecular carrier (PLCD) that could improve the solubility of bilirubin and slowly release bilirubin to protect islets after cotransplantation. PLCD was synthesized by conjugating activated ß-cyclodextrin (ß-CD) to the side chain of ε-polylysine (PLL) and acted as a carrier to load bilirubin via host-guest interactions. The constructed bilirubin supramolecular system (PLCD-BR) significantly improved the solubility and prolonged the action time of bilirubin. In vitro results confirmed that PLCD-BR coculture substantially enhanced the resistance of islets to excessive oxidative stress and proinflammatory stimulation and maximumly maintained the islet function. In vivo, PLCD could prolong drug duration at the transplant site, and the localized released bilirubin could protect the islets from oxidative stress and suppress the production of inflammatory cytokines. Crucially, islet transplantation with PLCD-BR significantly extended the stable blood glucose time of diabetic mice and produced a faster glucose clearance compared to those cotransplanted with free bilirubin. Additionally, immunohistochemical analysis showed that PLCD-BR had superior antioxidative and anti-inflammatory abilities and beneficial effects on angiogenesis. These findings demonstrate that the PLCD-BR has great potentials to support successful islet transplantation.


Assuntos
Anti-Inflamatórios/química , Bilirrubina/metabolismo , Estresse Oxidativo , Polilisina/química , beta-Ciclodextrinas/química , Animais , Anti-Inflamatórios/farmacologia , Bilirrubina/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Inflamação/prevenção & controle , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
12.
Drug Deliv ; 26(1): 870-885, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31524006

RESUMO

Osteoarthritis (OA) is a progressive and degenerative disease, which is no longer confined to the elderly. So far, current treatments are limited to symptom relief, and no valid OA disease-modifying drugs are available. Additionally, OA relative joint is challenging for drug delivery, since the drugs experience rapid clearance in joint, showing a poor bioavailability. Existing therapeutic drugs, like non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, are not conducive for long-term use due to adverse effects. Though supplementations, including chondroitin sulfate and glucosamine, have shown beneficial effects on joint tissues in OA, their therapeutic use is still debatable. New emerging agents, like Kartogenin (KGN) and Interleukin-1 receptor antagonist (IL-1 ra), without a proper formulation, still will not work. Therefore, it is urgent to establish a suitable and efficient drug delivery system for OA therapy. In this review, we pay attention to various types of drug delivery systems and potential therapeutic drugs that may escalate OA treatments.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Materiais Biocompatíveis/química , Osteoartrite/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Injeções Intra-Articulares/métodos
13.
Mater Sci Eng C Mater Biol Appl ; 104: 109942, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499951

RESUMO

Decellularized matrix (dECM) is isolated extracellular matrix of tissues from its original inhabiting cells, which has emerged as a promising natural biomaterial for tissue engineering, aiming at support, replacement or regeneration of damaged tissues. The dECM can be easily obtained from tissues/organs of various species by adequate decellularization methods, and mimics the structure and composition of the native extracellular matrix, providing a favorable cellular environment. In this review, we summarize the recent developments in the preparation of dECM materials, including decellularization, crosslinking and sterilization. Also, we cover the advances in the utilization of dECM biomaterials in regeneration medicine in pre-clinic and clinical trials. Moreover, we highlight those emerging medical benefits of dECM beyond tissue engineering, such as cell transplantation, in vitro/in vivo model and therapeutic cues delivery. With the advances in the preparation and broader application, the dECM biomaterials could become the gold scaffold and pharmaceutical excipients in medical sciences.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Animais , Humanos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Drug Deliv ; 25(1): 1403-1413, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29890854

RESUMO

Oligopeptide transporter 1 (PepT1) has been a striking prodrug-designing target. However, the underlying mechanism of PepT1 as a target to facilitate the oral absorption of nanoparticles (NPs) remains unclear. Herein, we modify Poly (lactic-co-glycolic acid) (PLGA) NPs with the conjugates of dipeptides (L-valine-valine, L-valine-phenylalanine) and polyoxyethylene (PEG Mw: 1000, 2000) stearate to facilitate oral delivery of docetaxel (DTX) to investigate the oral absorption mechanism and regulatory effects on PepT1 of the dipeptide-modified NPs. The cellular uptake of the dipeptide-modified NPs is more efficient than that of the unmodified NPs in the stably transfected hPepT1- Hela cells and Caco-2 cells, suggesting the involvement of PepT1 in the endocytosis of NPs. The internalization of the dipeptide-modified NPs is proved to be a proton-dependent process. Moreover, the L-valine-valine modified NPs with shorter PEG chain exhibit distinct advantages in terms of intestinal permeability and oral absorption, resulting in significantly improved oral bioavailability of DTX. In summary, PepT1 could serve as a desirable target for oral nanoparticulate drug delivery and the dipeptide-modified NPs represent a promising nanoplatform to facilitate oral delivery of hydrophobic drugs with low bioavailability.


Assuntos
Dipeptídeos/química , Nanopartículas/química , Transportador 1 de Peptídeos/metabolismo , Taxoides/administração & dosagem , Taxoides/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Docetaxel , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Ácido Láctico/química , Masculino , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pró-Fármacos/química , Ratos Sprague-Dawley
15.
Biomater Sci ; 6(7): 1869-1881, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29808221

RESUMO

Combination therapy with different functional chemotherapeutic agents based on nano-drug delivery systems is an effective strategy for the treatment of breast cancer. However, co-delivery of drug molecules with different physicochemical properties still remains a challenge. In this study, an amphiphilic poly (ε-caprolactone)-b-poly (l-glutamic acid)-g-methoxy poly (ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer was designed and synthesized to develop a nanocarrier for the co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic disulfiram (DSF). The amphiphilic copolymer self-assembled into core-shell-corona structured nanoparticles with the hydrophobic PCL core for DSF loading (hydrophobic interaction) and anionic poly (glutamic acid) shell for DOX loading (electrostatic interaction). DSF and DOX co-loaded nanoparticles (Co-NPs) resulted in high drug loading and precisely controlled DSF/DOX ratio via formulation optimization. Compared with free drug solutions, DSF and DOX delivered by the Co-NPs were found to have improved intracellular accumulation. Results of cytotoxicity assays showed that DSF/DOX delivered at the weight ratio of 0.5 and 1 could achieve a synergistic cytotoxic effect on breast cancer cell lines (MCF-7 and MDA-MB-231). In vivo imaging confirmed that the core-shell-corona nanoparticles could efficiently accumulate in tumors. In vivo anti-tumor effect results indicated that Co-NPs showed an improved drug synergistic effect on antitumor activity compared with the free drug combination. Therefore, it can be concluded that core-shell-corona nanoparticles prepared by PCL-b-PGlu-g-mPEG could be a promising co-delivery system for drug combination therapy in the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dissulfiram/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos , Nanopartículas/química , Animais , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Dissulfiram/química , Doxorrubicina/química , Composição de Medicamentos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Poliésteres/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Eletricidade Estática , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomater Sci ; 6(10): 2681-2693, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30151516

RESUMO

Nanoparticles (NPs) are unavoidably covered by a layer of immunogenic proteins upon injection into blood, such as immunoglobins and complements, which buries the active-targeting ligands and triggers the rapid clearance of NPs by the mononuclear phagocytic system. Low antifouling polyethylene glycol is used to inhibit the formation of the immunogenic corona but it leads to poor cellular uptake and the immunogen-related accelerated blood clearance (ABC) phenomenon in multiple administrations. Here, we develop surface maleimide-modified NPs that covalently conjugate in vivo plasma albumin in its corona upon exposure to blood. The in situ recruited low-immunogenic albumin-enriching corona is capable of protecting maleimide-decorated NPs from phagocytosis in the bloodstream, preventing the ABC phenomenon in the second administration, facilitating NP accumulation in the tumor site/cells by the passive EPR effect and albumin receptor-mediated active targeting, and finally improving the antitumor activity. Such findings suggest that the facile strategy, based on the in situ anchored albumin-enriching corona, is efficient at enabling maleimide-decorated NPs to acquire stealth and tumor-targeting ability.


Assuntos
Maleimidas/administração & dosagem , Nanopartículas/administração & dosagem , Coroa de Proteína/química , Albumina Sérica/química , Animais , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Maleimidas/química , Maleimidas/farmacocinética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Poliglactina 910/administração & dosagem , Poliglactina 910/química , Poliglactina 910/farmacocinética , Ratos Sprague-Dawley
17.
Drug Deliv ; 24(1): 1338-1349, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28911246

RESUMO

l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl--coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl-) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy. Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.


Assuntos
Nanopartículas , Sistema ASC de Transporte de Aminoácidos , Células CACO-2 , Carnitina , Neoplasias do Colo , Humanos , Ácido Láctico , Antígenos de Histocompatibilidade Menor , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Membro 5 da Família 22 de Carreadores de Soluto
18.
Biomater Sci ; 5(2): 295-304, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27991616

RESUMO

Tumor cells have an increased demand for amino acids to support their rapid growth and malignant metastasis. Transfer of amino acids across plasma membranes depends on several amino acid transporters that are highly upregulated in tumor cells and are promising targets for tumor cell-selective therapy. In this study, stealth liposomal systems functionalized with aspartate-polyoxyethylene stearate conjugate (APS) were developed for transporter-mediated targeted delivery to ATB0,+, which is overexpressed human lung cells. The resultant ATB0,+-targeting liposomes (APS-Lips) consisted of a liposome core and the surface coverage of the APS modifier had an optimized density of 10%. APS-Lips had a uniform particle size distribution and high encapsulation efficiency of docetaxel (DTX, >80%). APS modification had a negligible effect on the DTX release from liposomes. Compared with Taxotere and unmodified liposomes, APS-Lips showed increased intracellular delivery and antitumor potency against human lung cells. Furthermore, competitive endocytosis studies showed that the cellular uptake of APS-Lips was notably decreased in the presence of glycine, a typical substrate of ATB0,+, and was increased through adhesion to the cell membrane via transporter-substrate interactions. Finally, in vitro hemolysis and in vivo vascular irritation studies in rabbits confirmed the good blood compatibility and minimal vascular stimulation of the synthetic ATB0,+-targeting material APS. These results demonstrated that the aspartate-modified liposomes could be a promising nanocarrier for ATB0,+ transporter-mediated targeted drug delivery to treat lung cancer.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antineoplásicos/farmacologia , Ácido Aspártico/química , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Taxoides/farmacologia , Sistemas de Transporte de Aminoácidos , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/química , Lipossomos/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia Confocal , Estrutura Molecular , Taxoides/química
19.
Adv Healthc Mater ; 6(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28661032

RESUMO

OCTN2 (SLC22A5) is a Na+ -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na+ . Computational OCTN2 docking analysis shows that the presence of Na+ is important for the formation of the energetically stable intermediate complex of transporter-Na+ -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles.


Assuntos
Carnitina/química , Endocitose , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Administração Oral , Disponibilidade Biológica , Células CACO-2 , Carnitina/síntese química , Humanos , Absorção Intestinal , Íons , Ácido Láctico/química , Sistema Linfático/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nanopartículas/ultraestrutura , Paclitaxel/farmacocinética , Espectroscopia Fotoeletrônica , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/química , Membro 5 da Família 22 de Carreadores de Soluto/genética
20.
J Control Release ; 243: 370-380, 2016 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-27810556

RESUMO

Rapidly proliferating tumor cells upregulate specific amino acid transporters, which hold great potential for tumor-selective drug delivery. Published reports have focused primarily on blocking these transporters as a means of starving the tumor cells of amino acids, but their potential in drug delivery remains understudied. In the present study, we developed liposomes functionalized with lysine and polyoxyethylene stearate conjugate (LPS) to interact with ATB0,+, an amino acid transporter overexpressed in hepatocarcinoma and the liver cancer cell line HepG2. The LPS modified liposomes (LPS-Lips) were ~100nm in size and exhibited high drug encapsulation efficiency as 94.7%. The uptake of LPS-Lips in HepG2 cells was dependent on Na+ and Cl-. Molecular dynamic simulation showed that a sustained occluded state of the transporter upon binding to co-transported ions was formed and LPS-Lips triggered the cellular internalization of liposomes. We loaded these LPS-Lips with docetaxel and evaluated the potential of ATB0,+-mediated endocytosis of the drug-loaded LPS-Lips in HepG2 cells in vitro and in syngeneic mouse transplants in vivo. Compared with unmodified liposomes, which did not interact with ATB0,+, LPS-Lips exhibited the ability to deliver docetaxel more efficiently into tumor cells with consequent greater antitumor efficacy and less systemic toxicity. These studies provide first evidences that ATB0,+ can be used as a novel and effective target for drug delivery system in tumor cells using chemically modified liposomes for loading with chemotherapeutics and targeting them for the transporter-mediated endocytosis. As ATB0,+ is highly upregulated in several cancers, this approach holds potential for tumor-selective delivery of drugs to treat these cancer types.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Taxoides/administração & dosagem , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Carcinoma Hepatocelular/patologia , Docetaxel , Endocitose/fisiologia , Células Hep G2 , Humanos , Lipossomos , Lisina/química , Camundongos , Camundongos Endogâmicos BALB C , Antígenos de Histocompatibilidade Menor/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química , Taxoides/farmacologia , Taxoides/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA