Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 17(1): 59-69, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31751144

RESUMO

Sustained-release formulations for ocular delivery are of increasing interest given their potential to significantly improve treatment efficacy and patient adherence. The objectives of this study were (i) to develop a sustained-release formulation of spironolactone (SPL) using a biodegradable and injectable polymer, hexyl-substituted poly-lactic acid (hexPLA) and (ii) to investigate the ocular biodistribution and tolerability of SPL and its metabolites in rats in vivo over 1 month following a single intravitreal injection (IVT inj). The concentrations of SPL and its two principal active metabolites, 7α-thiomethylspironolactone and canrenone (CAN), in the different ocular compartments were determined at different time points (3, 7, and 31 days after IVT inj) using a validated ultra-high-performance liquid chromatography-mass spectrometry method. Systemic exposure following a single IVT inj of 5% SPL-hexPLA formulation was evaluated by quantifying SPL and its metabolites in the plasma. Ocular tolerability of the formulation was evaluated using in vivo retinal imaging and histology. In vitro release studies revealed a sustained release of SPL from 5% SPL-hexPLA for up to 65 days. In vivo studies showed that SPL and its metabolites were detected in all ocular tissues at 3 and 7 days post-IVT inj. At 31 days post-IVT inj, SPL and CAN were mainly detected in the retina. These results also highlighted the clearance pathway of SPL and its metabolite involving the anterior and posterior routes in the first week (days 3 and 7), then mainly the posterior segment in the last week (day 31). This study showed that a single IVT inj of 5% SPL-hexPLA in rats enabled sustained delivery of therapeutic amounts of SPL for up to 1 month to the retina without systemic exposure. This formulation may be of interest for the local treatment of diseases involving overactivation of the mineralocorticoid receptor in the chorioretina such as chronic central serous chorioretinopathy.


Assuntos
Poliésteres/química , Retina/metabolismo , Espironolactona/administração & dosagem , Espironolactona/farmacocinética , Animais , Canrenona/química , Cromatografia Líquida , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Fundo de Olho , Injeções Intravítreas , Espectrometria de Massas , Ratos , Ratos Wistar , Retina/citologia , Retina/efeitos dos fármacos , Espironolactona/análogos & derivados , Espironolactona/química , Espironolactona/toxicidade , Fatores de Tempo , Distribuição Tecidual , Tomografia de Coerência Óptica
2.
J Control Release ; 266: 187-197, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28947395

RESUMO

Mineralocorticoid receptor (MR) contributes to retinal/choroidal homeostasis. Excess MR activation has been shown to be involved in pathogenesis of central serous chorioretinopathy (CSCR). Systemic administration of MR antagonist (MRA) reduces subretinal fluid and choroidal vasodilation, and improves the visual acuity in CSCR patients. To achieve long term beneficial effects in the eye while avoiding systemic side-effects, we propose the use of biodegradable spironolactone-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (MSs). In this work we have evaluated the ocular tolerance of MSs containing spironolactone in rat' eyes. As previous step, we have also studied the tolerance of the commercial solution of canrenoate salt, active metabolite of spironolactone. PLGA MSs allowed in vitro sustained release of spironolactone for 30days. Rat eyes injected with high intravitreous concentration of PLGA MSs (10mg/mL) unloaded and loaded with spironolactone maintained intact retinal lamination at 1month. However enhanced glial fibrillary acidic protein immunostaining and activated microglia/macrophages witness retinal stress were observed. ERG also showed impaired photoreceptor function. Intravitreous PLGA MSs concentration of 2mg/mL unloaded and loaded with spironolactone resulted well tolerated. We observed reduced microglial/macrophage activation in rat retina compared to high concentration of MSs with normal retinal function according to ERG. Spironolactone released from low concentration of MSs was active in the rat retina. Low concentration of spironolactone-loaded PLGA MSs could be a safe therapeutic choice for chorioretinal disorders in which illicit MR activation could be pathogenic.


Assuntos
Ácido Láctico/administração & dosagem , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Espironolactona/administração & dosagem , Animais , Ácido Canrenoico/administração & dosagem , Corpo Ciliar/anatomia & histologia , Corpo Ciliar/efeitos dos fármacos , Liberação Controlada de Fármacos , Injeções Intravítreas , Ácido Láctico/química , Macrófagos/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Microesferas , Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacocinética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Retina/anatomia & histologia , Retina/efeitos dos fármacos , Retina/fisiologia , Espironolactona/química , Espironolactona/farmacocinética
3.
Invest Ophthalmol Vis Sci ; 57(4): 1671-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054520

RESUMO

PURPOSE: Targeted drug delivery to the ocular tissues remains a challenge. Biodegradable intraocular implants allow prolonged controlled release of drugs directly into the eye. In this study, we evaluated an anterior suprachoroidal polyurethane implant containing dexamethasone polyurethane dispersions (DX-PUD) as a drug delivery system in the rat model of endotoxin-induced uveitis (EIU). METHODS: In vitro drug release was studied using PUD implants containing 8%, 20%, and 30% (wt/wt) DX. Cytotoxicity of the degradation products of DX-PUD was assessed on human ARPE-19 cells using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) test. Short-term ocular biocompatibility of suprachoroidal DX-PUD implants was evaluated in normal rat eyes. Endotoxin-induced uveitis was then induced in rat eyes preimplanted with DX-PUD. Clinical examination was performed at 24 hours; eyes were used to assess inflammatory cell infiltration and macrophage/microglial activation. Cytokine and chemokine expression in the iris/ciliary body and in the retina was investigated using quantitative PCR. Feasibility of anterior suprachoroidal PUD implantation was also tested using postmortem human eyes. RESULTS: A burst release was followed by a sustained controlled release of DX from PUD implants. By-products of the DX-PUD were not toxic to human ARPE-19 cells or to rat ocular tissues. Dexamethasone-PUD implants prevented EIU in rat eyes, reducing inflammatory cell infiltration and inhibiting macrophage/microglial activation. Dexamethasone-PUD downregulated proinflammatory cytokines/chemokines (IL-1ß, IL-6, cytokine-induced neutrophil chemoattractant [CINC]) and inducible nitric oxide synthase (iNOS) and upregulated IL-10 anti-inflammatory cytokine. Polyurethane dispersion was successfully implanted into postmortem human eyes. CONCLUSIONS: Dexamethasone-PUD implanted in the anterior suprachoroidal space may be of interest in the treatment of intraocular inflammation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Uveíte/prevenção & controle , Animais , Anti-Inflamatórios/farmacocinética , Linhagem Celular , Sobrevivência Celular , Corpo Ciliar/metabolismo , Corantes/farmacologia , Citocinas/genética , Citocinas/metabolismo , Dexametasona/farmacocinética , Implantes de Medicamento , Espaço Extracelular , Feminino , Humanos , Iris/metabolismo , Lipopolissacarídeos/toxicidade , Poliuretanos , Ratos , Ratos Endogâmicos Lew , Epitélio Pigmentado da Retina/efeitos dos fármacos , Salmonella typhimurium , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Uveíte/induzido quimicamente , Uveíte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA