Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686012

RESUMO

The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through the use of: (1) nanocellulose as an additive to reduce their hydrophilic nature; (2) bio-based plasticizer to improve their mechanical properties; and (3) chestnut extract as an antimicrobial agent. To evaluate their stability over time, the properties of as-formed films (mechanical, hydrophilic, barrier and antibacterial) were studied immediately after preparation and after 7, 14 and 30 days. In addition, the morphological properties of the films were characterized by scanning electron microscopy, their structure by FTIR, their transparency by UV-Vis and their thermal properties by TGA. The films showed a hydrophobic character (contact angle above 100°), barrier properties to oxygen and carbon dioxide and strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Moreover, the use of nanofillers did not deteriorate the elongation at breaks or the thermal properties of the films, but their addition reduced the transparency. In addition, the results showed that the greatest change in film properties occurred within the first 7 days after sample preparation, after which the properties were found to stabilize.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Plastificantes , Celulose , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076921

RESUMO

Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.


Assuntos
Anti-Infecciosos Locais , Infecções Bacterianas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Biofilmes , Fungos , Humanos
3.
Small ; 14(28): e1800863, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862640

RESUMO

Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.


Assuntos
Benzenossulfonatos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Impressão Molecular/métodos , Neuroglia/metabolismo , Polímeros/química , Animais , Astrócitos/citologia , Quimiocinas/metabolismo , Técnicas Eletroquímicas , Microeletrodos , Ratos Sprague-Dawley , Ratos Wistar
4.
Sci Rep ; 13(1): 18365, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884622

RESUMO

The design of biomaterials able to facilitate cell adhesion is critical in the field of tissue engineering. Precise control of surface chemistry at the material/tissue interface plays a major role in enhancing the interactions between a biomaterial and living cells. Bio-integration is particularly important in case of various electrotherapies, since a close contact between tissue and electrode's surface facilitates treatment. A promising approach towards surface biofunctionalization involves the electrografting of diazonium salts followed by the modification of organic layer with pro-adhesive polypeptides. This study focuses on the modification of platinum electrodes with a 4-nitrobenzenediazonium layer, which is then converted to the aminobenzene moiety. The electrodes are further biofunctionalized with polypeptides (polylysine and polylysine/laminin) to enhance cell adhesion. This study also explores the differences between physical and chemical coupling of selected polypeptides to modulate pro-adhesive nature of Pt electrodes with respect to human neuroblastoma SH-SY5Y cells and U87 astrocytes. Our results demonstrate the significant enhancement in cell adhesion for biofunctionalized electrodes, with more amplified adhesion noted for covalently coupled polypeptides. The implications of this research are crucial for the development of more effective and functional biomaterials, particularly biomedical electrodes, which have the potential to advance the field of bioelectronics and improve patients' outcomes.


Assuntos
Neuroblastoma , Polilisina , Humanos , Adesivos , Materiais Biocompatíveis , Peptídeos , Adesão Celular , Propriedades de Superfície
5.
Sci Rep ; 13(1): 11530, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460643

RESUMO

Due to the growing demand for robust and environmentally friendly antimicrobial packaging materials, biopolymers have recently become extensively investigated. Although biodegradable biopolymers usually lack mechanical properties, which makes it inevitable to blend them with plasticizers. The purpose of this study was to investigate plasticization efficiency of bio-based plasticizers introduced into sodium alginate compositions containing chestnut extract and their effect on selected film properties, including primarily mechanical and antibacterial properties. The films were prepared by the casting method and sodium alginate was cross-linked with calcium chloride. Six different plasticizers, including three commercially available ones (glycerol, epoxidized soybean oil and palm oil) and three synthesized plasticizers that are mixtures of bio-based plasticizers, were used to compare their influence on the film properties. Interactions between the polymer matrix and the plasticizers were investigated using Fourier transform infrared spectroscopy. The morphological characteristics of the films were characterized by scanning electron microscopy. Thermal properties, tensile strength, elongation at break, hydrophilic, and barrier properties of the obtained films were also determined. To confirm the obtaining of active films through the use of chestnut extract and to study the effect of the proposed plasticizers on the antibacterial activity of the extract, the obtained films were tested against bacteria cultures. The final results showed that all of the obtained films exhibit a hydrophilic character and high barrier effect to oxygen, carbon dioxide and water vapor. In addition, sodium alginate films prepared with chestnut extract and the plasticizer proposed by us, showed better mechanical and antimicrobial properties than the films obtained with chestnut extract and the commercially available plasticizers.


Assuntos
Anti-Infecciosos , Plastificantes , Plastificantes/química , Alginatos/química , Polímeros , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resistência à Tração
6.
Bioelectrochemistry ; 153: 108484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37302335

RESUMO

The continuous progression in the field of electrotherapies implies the development of multifunctional materials exhibiting excellent electrochemical performance and biocompatibility, promoting cell adhesion, and possessing antibacterial properties. Since the conditions favouring the adhesion of mammalian cells are similar to conditions favouring the adhesion of bacterial cells, it is necessary to engineer the surface to exhibit selective toxicity, i.e., to kill or inhibit the growth of bacteria without damaging mammalian tissues. The aim of this paper is to introduce a surface modification approach based on a subsequent deposition of silver and gold particles on the surface of a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting PEDOT-Au/Ag surface is found to possess optimal wettability, roughness, and surface features making it an excellent platform for cell adhesion. By depositing Ag particles on PEDOT surface decorated with Au particles, it is possible to reduce toxic effects of Ag particles, while maintaining their antibacterial activity. Besides, electroactive and capacitive properties of PEDOT-Au/Ag account for its applicability in various electroceutical therapies.


Assuntos
Ouro , Prata , Animais , Prata/farmacologia , Prata/química , Ouro/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Antibacterianos/farmacologia , Mamíferos
7.
Bioelectrochemistry ; 146: 108127, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35397436

RESUMO

Recent studies willingly agree that conducting polymers (CPs) are attractive materials for biomedical engineering purposes, mainly because of their unique physicochemical characteristics combining electrical conductivity and high biocompatibility. Nevertheless, the applicability of CPs is restricted by their limited stability under physiological conditions, associated with a decrease in electrical conductivity upon dedoping. Accordingly, modifying chemical structure of CPs to exhibit a self-doping effect seems to be an appealing approach aimed to enhance their functionality. The aim of this review is to provide a current state-of-the-art in the research concerning self-doped CPs, particularly those with potential biomedical applications. After presenting a library of available structure modifications, we describe their physicochemical characteristics, focusing on achievable conductivities, electrochemical, optical and mechanical behaviour, as well as biological properties. To highlight high applicability of self-doped CPs in biomedical engineering, we elaborate on biomedical areas benefiting most from using this type of conducting materials.


Assuntos
Engenharia Biomédica , Polímeros , Bioengenharia , Condutividade Elétrica , Polímeros/química
8.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671866

RESUMO

The detection of cancer biomarkers has recently become an established method for the early diagnosis of cancer. The sensitive analysis of specific biomarkers can also be clinically applied for the determination of response to treatment and monitoring of disease progression. Because of the ultra-low concentration of cancer biomarkers in body fluids, diagnostic tools need to be highly sensitive and specific. Conducting polymers (CPs) are particularly known to exhibit numerous features that enable them to serve as excellent materials for the immobilization of biomolecules and the facilitation of electron transfer. Their large surface area, porosity, and the presence of functional groups provide CPs with binding sites suitable for capturing biomarkers, in addition to their sensitive and easy detection. The aim of this review is to present a comprehensive summary of the available electrochemical biosensors based on CPs and their composites for the ultrasensitive detection of selected cancer biomarkers. We have categorized the study based on different types of targeted biomarkers such as DNAs, miRNAs, proteins, enzymes, neurotransmitters and whole cancer cells. The sensitivity of their detection is enhanced by the presence of CPs, providing a limit of detection as low as 0.5 fM (for miRNA) and 10 cells (for the detection of cancer cells). The methods of multiplex biomarker detection and cell capture are indicated as the most promising category, since they furnish more accurate and reliable results. Ultimately, we discuss the available CP-based electrochemical sensors and promising approaches for facilitating cancer diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias , Polímeros/química , Biomarcadores Tumorais , DNA/química , Proteínas/análise , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Neoplasias/diagnóstico
9.
Bioelectrochemistry ; 144: 108030, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34896782

RESUMO

Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.


Assuntos
Polímeros
10.
Sci Rep ; 11(1): 1295, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446813

RESUMO

By providing a bidirectional communication channel between neural tissues and a biomedical device, it is envisaged that neural interfaces will be fundamental in the future diagnosis and treatment of neurological disorders. Due to the mechanical mismatch between neural tissue and metallic neural electrodes, soft electrically conducting materials are of great benefit in promoting chronic device functionality. In this study, carbon nanotubes (CNT), silver nanowires (AgNW) and poly(hydroxymethyl 3,4-ethylenedioxythiophene) microspheres (MSP) were employed as conducting fillers within a poly(ε-decalactone) (EDL) matrix, to form a soft and electrically conducting composite. The effect of a filler type on the electrical percolation threshold, and composite biocompatibility was investigated in vitro. EDL-based composites exhibited favourable electrochemical characteristics: EDL/CNT-the lowest film resistance (1.2 ± 0.3 kΩ), EDL/AgNW-the highest charge storage capacity (10.7 ± 0.3 mC cm- 2), and EDL/MSP-the highest interphase capacitance (1478.4 ± 92.4 µF cm-2). All investigated composite surfaces were found to be biocompatible, and to reduce the presence of reactive astrocytes relative to control electrodes. The results of this work clearly demonstrated the ability of high aspect ratio structures to form an extended percolation network within a polyester matrix, resulting in the formulation of composites with advantageous mechanical, electrochemical and biocompatibility properties.


Assuntos
Materiais Biocompatíveis/química , Lactonas/química , Nanotubos de Carbono/química , Nanofios/química , Polímeros/química , Animais , Astrócitos/citologia , Células Cultivadas , Condutividade Elétrica , Eletrodos , Feminino , Neurônios/citologia , Ratos Sprague-Dawley , Prata/química , Tiofenos/química
11.
Mater Sci Eng C Mater Biol Appl ; 123: 112017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812635

RESUMO

The growth of bacteria and the formation of complex bacterial structures on biomedical devices is a major challenge in modern medicine. The aim of this study was to develop a biocompatible, conducting and antibacterial polymer coating applicable in biomedical engineering. Since conjugated polymers have recently aroused strong interest as controlled delivery systems for biologically active compounds, we decided to employ a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix to immobilize a powerful, first-line antibiotic: tetracycline (Tc). Drug immobilization was carried out simultaneously with the electrochemical polymerization process, allowing to obtain a polymer coating with good electrochemical behaviour (charge storage capacity of 19.15 ± 6.09 mC/cm2) and high drug loading capacity (194.7 ± 56.2 µg/cm2). Biological activity of PEDOT/Tc matrix was compared with PEDOT matrix and a bare Pt surface against a model Gram-negative bacteria strain of Escherichia coli with the use of LIVE/DEAD assay and SEM microscopy. Finally, PEDOT/Tc was shown to serve as a robust electroactive coating exhibiting antibacterial activity.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
12.
Mater Sci Eng C Mater Biol Appl ; 121: 111857, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579489

RESUMO

Biodegradable strain sensors able to undergo controlled degradation following implantation have recently received significant interest as novel approaches to detect pathological tissue swelling or non-physiological stresses. In this study, the physicomechanical, electrochemical and active pressure sensing behavior of an electrically conductive and biodegradable poly(glycerol sebacate urethane) (PGSU) composite, reinforced with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) functionalized carbon nanotubes (CNTs), was evaluated in vitro. Analysis of these PGSU-CNTs composites demonstrated that the incorporation of functionalized CNTs into a biodegradable elastomer resulted in enhanced mechanical strength, conductivity and tailored matrix biodegradation. PGSU-CNT composites were subsequently formulated into flexible and active pressure sensors which demonstrated optimal sensitivity to applied 1% uniaxial tensile strains. Finally, cytocompatibility analysis a with primary neural culture confirmed that PGSU-CNT composites exhibited low cytotoxicity, and supported neuron adhesion, viability, and proliferation in vitro.


Assuntos
Nanotubos de Carbono , Compostos Bicíclicos Heterocíclicos com Pontes , Glicerol , Polímeros , Uretana
13.
J Mater Chem B ; 7(31): 4811-4820, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31389966

RESUMO

The rapidly expanding fields of bioelectronics, and biological interfaces with electronic sensors and stimulators, are placing an increasing demand on candidate materials to serve as robust surfaces that are both biocompatible, stable and electroconductive. Amongst conductive polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising material in biomedical research due to its appropriate stability and high conductivity, however its intrinsic solubility requires a crosslinking process that can limit its conductivity and biocompatibility. Poly(ethylene glycol) is known to be a suitably anti-immunogenic moiety and its derivatives have been widely used for biomedical applications. In this study we investigate the application of poly(ethylene glycol)diglycidyl ether (PEGDE) as an effective crosslinker and conductive filler for PEDOT:PSS. From our interpretation of XPS analysis we hypothesise that the crosslinking reaction is occurring via the epoxy ring of PEGDE interacting with the sulfonic groups of excel PSS chains, which reaches a saturation at 3 w/v% PEGDE concentration. PEGDE crosslinked films did not disperse in aqueous environments, had enhanced electrical conductivity and imparted a significant degree of hydrophilicity to PEDOT:PSS films. This hydrophilicity and the presence of biocompatible PEGDE led to good cell viability and a significantly increased degree of cell spreading on PEDOT:PSS films. In comparison to widely reported chemical crosslinking via glycidoxy propyltrimethoxysilane (GOPS), this original crosslinking yields a highly hydrophilic 2D film substrate with increased electroconductive and biocompatibility properties, resulting in a next-generation formulation for bioengineering applications.


Assuntos
Materiais Biocompatíveis/química , Resinas Epóxi/química , Poliestirenos/química , Tiofenos/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/toxicidade , Condutividade Elétrica , Resinas Epóxi/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Poliestirenos/toxicidade , Tiofenos/toxicidade , Molhabilidade
14.
Biomed Mater ; 13(5): 054102, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29633721

RESUMO

Electrically conducting polymer formulations have emerged as promising approaches for the development of interfaces and scaffolds in neural engineering, facilitating the development of physicochemically modified constructs capable of cell stimulation through electrical and ionic charge transfer. In particular, topographically functionalized or neuromorphic materials are able to guide the growth of axons and promote enhanced interfacing with neuroelectrodes in vitro. In this study, we present a novel method for the formation of conducting polymer/gold assemblies via a combinational sputter and spin coating technique. The resulting multilayered PEDOT/Au substrates possessed enhanced electrochemical properties as a function of the number of deposited organic/inorganic layers. It was observed that through subsequent electrochemical conditioning it was possible to form neuromorphic fractal-like assemblies of gold particles, which significantly impacted on the electrochemical characteristics of the PEDOT/Au films. PEDOT/Au assemblies were observed to possess unique topographical features, advantageous charge storage capacity (34.9 ± 2.6 mC cm-2) and low electrical impedance (30 ± 2 Ω at 1 kHz). Furthermore, PEDOT/Au assemblies were observed to facilitate the outgrowth of neurites in a mixed ventral mesencephalon cell population and promotean increase in the neurons/astrocytes ratio relative to all experimental groups, indicating PEDOT/Au biomimetic neuromorphic assemblies as promising materials in engineering electrically conductive neural interface systems.


Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Materiais Revestidos Biocompatíveis/química , Ouro/química , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Polímeros/química , Animais , Eletroquímica , Fractais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Neuritos/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
15.
Mater Sci Eng C Mater Biol Appl ; 73: 611-615, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183652

RESUMO

Chemotherapy is one of the most commonly used cancer treatments. Even so, it has significant adverse effects on healthy tissues. These effects can be avoided through the use of regional chemotherapy, an approach based on delivering the anti-cancer agents locally, to the site of cancer tissue accumulation. Among the different classes of biomaterials that are used as drug carriers, conducting polymers allow reversible, electrostatic immobilization and controlled release of a variety of compounds. In this work, we describe a method for producing surfaces possessing anti-cancer activity, which are a potential tool for regional chemotherapy. Our method consists of covering the surface with a conducting polymer matrix, followed by loading that matrix with cytotoxic compounds. We have chosen betulin as the model compound for this study, as it is commonly available triterpene that exhibits cytotoxicity against a variety of tumor cell lines. The presence of betulin in the polymer matrix is confirmed by SEM, EDS and IR spectroscopy. The release of betulin is carried out using two protocols, i.e. passive mode (open circuit conditions) or active (application of constant potential) mode. The biological activity of betulin that was released from the matrix is confirmed by its toxic effect against KB and MCF-7 cancer cell lines (IC50 values of 13.34±0.88µg/mL and 12.57±1.81µg/mL for KB and MCF-7, respectively). The described method of surface modification is shown to be an effective mean of producing surfaces that possess anti-cancer activity, serving as advantageous materials for regional chemotherapy applications.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Triterpenos/farmacologia , Morte Celular/efeitos dos fármacos , Eletroquímica , Humanos , Células KB , Células MCF-7 , Polimerização , Espectrometria por Raios X , Espectrofotometria Infravermelho
16.
Mater Sci Eng C Mater Biol Appl ; 62: 927-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952500

RESUMO

Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Polímeros/química
17.
Bioelectrochemistry ; 108: 13-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606716

RESUMO

As numerous therapeutic agents are not well tolerated when administrated systemically, localized and controlled delivery can help to decrease their toxicity by applying an optimized drug concentration at extended exposure time. Among different types of drug delivery systems, conjugated polymers are considered as promising materials due to their biocompatibility, electrical conductivity and ability to undergo controllable redox reactions. In this work poly(3,4-ethylenedioxypyrrole), PEDOP, matrix is described for the first time as a reservoir of a model drug, ibuprofen (IBU). Drug immobilization process is performed in situ, during the electrochemical polymerization of 10 mM EDOP in the presence of 5-50 mM IBU. The loading efficiency of polymer matrix is dependent on IBU concentration and reaches 25.0±1.3 µg/cm2. The analysis of PEDOP-IBU chemical structure based on Raman spectroscopy, energy dispersive spectroscopy and surface morphology data provided by scanning electron microscopy shows that IBU is accumulated in the structure of matrix and evidently influences its morphology. IBU is then released in a controlled way under the influence of applied potential (-0.7 V vs. Ag/AgCl). It is demonstrated that the judicious choice of the synthesis conditions leads to a tailored loading efficiency of PEDOP matrix and to a tunable drug release.


Assuntos
Portadores de Fármacos/química , Condutividade Elétrica , Polímeros/química , Pirróis/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Eletroquímica , Ibuprofeno/química
18.
Mater Sci Eng C Mater Biol Appl ; 54: 176-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046281

RESUMO

The purpose of this study is to develop biocompatible and conducting coating being carrier of biologically active compounds with the potential use in neuroprosthetics. Conducting polypyrrole matrix has been used to immobilize and release model drugs, quercetin and ciprofloxacin. Two routes of immobilization are described: drugs have been incorporated in the polymer matrix in the course of the electropolymerization process or after polymerization, in the course of polymer oxidation. Using UV/Vis spectroscopic detection we demonstrate that both immobilization approaches display different drug-loading efficiencies. In the case of ciprofloxacin, drug incorporation following synthesis is a more efficient immobilization approach (final drug concentration: 43.3 (±9.5) µM/cm(2)), while for quercetin the highest loading is accomplished by drug incorporation during synthesis (final drug concentration: 29.1 (±5.9) µM/cm(2)). The process of drug incorporation results in the variation of surface morphology with respect to the method of immobilization as well as the choice of drug. The results prove that electrochemical methods are efficient procedures for making multifunctional polymer matrices which might be perspective bioactive coatings for implantable neuroprosthetic devices.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Pirróis/química , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Preparações de Ação Retardada , Microscopia Eletrônica de Varredura , Polimerização , Quercetina/química , Quercetina/farmacologia , Propriedades de Superfície
19.
Acta Biomater ; 19: 158-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25770926

RESUMO

Exemplifying the synergy of anticancer properties of triterpenoids and ion retention qualities of conjugated polymers, we propose a conducting matrix to be a reservoir of anticancer compounds. In this study, poly(3,4-ethylenedioxythiophene), PEDOT, based matrix for electrically triggered and local delivery of the ionic form of anticancer drug, oleanolic acid (HOL), has been investigated. An initial, one-step fabrication procedure has been proposed, providing layers exhibiting good drug release properties and biological activity. Investigation of obtained systems and implementation of modifications revealed another route of fabrication. This procedure was found to yield layers possessing a significantly greater storage capacity of OL(-), as evidenced by the 52% increase in the drug concentrations attainable through electro-assisted release. Examination of the biological activity of immobilised and released OL(-) molecules proved that electrochemical treatment has negligible impact on the anticancer properties of OL(-), particularly when employing the three-step procedure, in which the range of applied potentials is limited. PEDOT/OL(-) composite has been demonstrated to be a robust and cost-effective material for controlled drug delivery.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Preparações de Ação Retardada/química , Nanocápsulas/química , Nanoconjugados/química , Ácido Oleanólico/administração & dosagem , Polímeros/química , Triterpenos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Preparações de Ação Retardada/administração & dosagem , Difusão , Teste de Materiais , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/ultraestrutura , Ácido Oleanólico/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA