Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(2)2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382085

RESUMO

Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.


Assuntos
Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Simplexvirus/efeitos dos fármacos , Taninos/farmacologia , Adesivos/química , Animais , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Prata/química , Suínos , Taninos/administração & dosagem , Taninos/uso terapêutico
2.
Int J Biol Macromol ; 262(Pt 1): 129880, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307427

RESUMO

The preparation and characterization of lignin nanoparticles (LNPs) were described. LNPs were produced via the precipitation technique. Nanocomposites of LNPs with poly (butylene adipate-co-terephthalate) (PBAT) were prepared by melt mixing with various concentrations up to 6 wt% of LNPs. The assessment of the effects of LNP addition on the mechanical, thermal, morphological, cytotoxicity, antioxidant, antibacterial, and antiviral properties of nanocomposites was carefully performed. The addition of LNPs to PBAT enhances the thermal stability of the nanocomposites. The antioxidant effect of LNPs on PBAT increased with increasing filler content. LNPs showed higher efficiency as antioxidant agents than lignin particles (LP). The tensile modulus increased by 20 % for the nanocomposites with 6 % LNPs in comparison with neat PBAT. The crystallization peak temperature of PBAT was 80 °C, which increased to 104.6 °C with the addition of 6 wt% of LNPs, suggesting their strong nucleation activity. Antibacterial tests demonstrated the bacteriostatic activities of LNP, LP, and nanocomposites. Both LP and LNP showed considerable antiviral activity against herpes simplex virus type 1 and human coronavirus 229e. The antiviral activity of LNP was concentration-dependent. The findings suggest that LNP is a promising bio-additive for PBAT and can enhance its properties for various applications, including food packaging.


Assuntos
Alcenos , Nanopartículas , Ácidos Ftálicos , Poliésteres , Humanos , Poliésteres/química , Lignina/farmacologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Adipatos , Nanopartículas/química , Antivirais/farmacologia
3.
Int J Biol Macromol ; 222(Pt A): 856-867, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174868

RESUMO

In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.


Assuntos
Quitosana , Nanofibras , Feminino , Humanos , Tenofovir/farmacologia , Quitosana/química , Nanofibras/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Óxido de Etileno , Fumaratos , Polímeros/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA