Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 19(2): 176-183, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29476588

RESUMO

BACKGROUND AND PURPOSE: This study summarizes the cranial stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) procedure at our institution. MATERIALS AND METHODS: Volumetric modulated arc therapy plans were generated for 40 patients with 188 lesions (range 2-8, median 5) in Eclipse and treated on a TrueBeam STx. Limitations of the custom beam model outside the central 2.5 mm leaves necessitated more than one isocenter pending the spatial distribution of lesions. Two to nine arcs were used per isocenter. Conformity index (CI), gradient index (GI) and target dose heterogeneity index (HI) were determined for each lesion. Dose to critical structures and treatment times are reported. RESULTS: Lesion size ranged 0.05-17.74 cm3 (median 0.77 cm3 ), and total tumor volume per case ranged 1.09-26.95 cm3 (median 7.11 cm3 ). For each lesion, HI ranged 1.2-1.5 (median 1.3), CI ranged 1.0-2.9 (median 1.2), and GI ranged 2.5-8.4 (median 4.4). By correlating GI to PTV volume a predicted GI = 4/PTV0.2 was determined and implemented in a script in Eclipse and used for plan evaluation. Brain volume receiving 7 Gy (V7 Gy ) ranged 10-136 cm3 (median 42 cm3 ). Total treatment time ranged 24-138 min (median 61 min). CONCLUSIONS: Volumetric modulated arc therapy provide plans with steep dose gradients around the targets and low dose to critical structures, and VMAT treatment is delivered in a shorter time than conventional methods using one isocenter per lesion. To further improve VMAT planning for multiple cranial metastases, better tools to shorten planning time are needed. The most significant improvement would come from better dose modeling in Eclipse, possibly by allowing for customizing the dynamic leaf gap (DLG) for a special SRS model and not limit to one DLG per energy per treatment machine and thereby remove the limitation on the Y-jaw and allow planning with a single isocenter.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Órgãos em Risco/efeitos da radiação , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica
2.
Med Phys ; 38(7): 3981-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21858995

RESUMO

PURPOSE: To establish a new clinical procedure in frameless stereotactic radiosurgery (SRS) for patient setup verification at treatment couch angles as well as for head-motion monitoring during treatment using video-based optical surface imaging (OSI). METHODS: A video-based three-dimensional (3D) OSI system with three ceiling-mounted camera pods was employed to verify setup at treatment couch angles as well as to monitor head motion during treatment. A noninvasive head immobilization device was utilized, which includes an alpha head mold and a dental mouthpiece with vacuum suction; both were locked to the treatment couch. Cone beam computed tomography (CBCT) was used as the standard for image-guided setup. Orthogonal 2D-kV imaging was applied for setup verification before treatment, between couch rotations, and after treatment at zero couch angle. At various treatment couch angles, OSI setup verification was performed, relative to initial OSI setup verification at zero couch angle after CBCT setup through a coordinate transformation. For motion monitoring, the setup uncertainty was decoupled by taking an on-site surface image as new reference to detect motion-induced misalignment in near real-time (1-2 frames per second). Initial thermal instability baseline of the real-time monitoring was corrected. An anthropomorphous head phantom and a 1D positioning platform were used to assess the OSI accuracy in motion detection in longitudinal and lateral directions. Two hypofractionated (9 Gy x 3 and 6 Gy x 5) frameless stereotactic radiotherapy (SRT) patients as well as two single-fraction (21 and 18 Gy) frameless SRS patients were treated using this frameless procedure. For comparison, 11 conventional frame-based SRS patients were monitored using the OSI to serve as clinical standards. Multiple noncoplanar conformal beams were used for planning both frameless and frame-based SRS with a micromultileaf collimator. RESULTS: The accuracy of the OSI in 1D motion detection was found to be 0.1 mm with uncertainty of +/- 0.1 mm using the head phantom. The OSI registration against simulation computed tomography (CT) external contour was found to be dependent on the CT skin definition with -0.4 mm variation. For frame-based SRS patients, head-motion magnitude was detected to be <1.0 mm (0.3 +/- 0.2 mm) and <1.0 degree (0.2 degrees +/- 0.2 degrees) for 98% of treatment time, with exception of one patient with head rotation <1.5 degrees for 98% of the time. For frameless SRT/SRS patients, similar motion magnitudes were observed with an average of 0.3 +/- 0.2 mm and 0.2 degrees +/- 0.1 degree in ten treatments. For 98% of the time, the motion magnitude was <1.1 mm and 1.0 degree. Complex head-motion patterns within 1.0 mm were observed for frameless SRT/SRS patients. The OSI setup verification at treatment couch angles was found to be within 1.0 mm. CONCLUSIONS: The OSI system is capable of detecting 0.1 +/- 0.1 mm 1D spatial displacement of a phantom in near real time and useful in head-motion monitoring. This new frameless SRS procedure using the mask-less head-fixation system provides immobilization similar to that of conventional frame-based SRS. Head-motion monitoring using near-real-time surface imaging provides adequate accuracy and is necessary for frameless SRS in case of unexpected head motion that exceeds a set tolerance.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Imageamento Tridimensional/instrumentação , Radiocirurgia/instrumentação , Cirurgia Assistida por Computador/instrumentação , Gravação em Vídeo/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA