Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 190(7): 3525-32, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427254

RESUMO

Polymeric microparticles have been widely investigated as platforms for delivery of drugs, vaccines, and imaging contrast agents and are increasingly used in a variety of clinical applications. Microparticles activate the inflammasome complex and induce the processing and secretion of IL-1ß, a key innate immune cytokine. Recent work suggests that although receptors are clearly important for particle phagocytosis, other physical characteristics, especially shape, play an important role in the way microparticles activate cells. We examined the role of particle surface texturing not only on uptake efficiency but also on the subsequent immune cell activation of the inflammasome. Using a method based on emulsion processing of amphiphilic block copolymers, we prepared microparticles with similar overall sizes and surface chemistries but having either smooth or highly microtextured surfaces. In vivo, textured (budding) particles induced more rapid neutrophil recruitment to the injection site. In vitro, budding particles were more readily phagocytosed than smooth particles and induced more lipid raft recruitment to the phagosome. Remarkably, budding particles also induced stronger IL-1ß secretion than smooth particles through activation of the NLRP3 inflammasome. These findings demonstrate a pronounced role of particle surface topography in immune cell activation, suggesting that shape is a major determinant of inflammasome activation.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Polímeros , Animais , Proteínas de Transporte/metabolismo , Humanos , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/imunologia , Neutrófilos/metabolismo , Tamanho da Partícula , Fagocitose/imunologia , Polímeros/química , Transdução de Sinais , Propriedades de Superfície
2.
J Biol Chem ; 288(12): 8061-8073, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23362274

RESUMO

Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Polissacarídeos/farmacologia , Ácidos Siálicos/farmacologia , Animais , Antivirais/administração & dosagem , Linhagem Celular , Chlorocebus aethiops , Cães , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Hemaglutinação/efeitos dos fármacos , Humanos , Vírus da Influenza A/fisiologia , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/administração & dosagem , Vírus do Sarcoma de Rous/efeitos dos fármacos , Vírus Sendai/efeitos dos fármacos , Ácidos Siálicos/administração & dosagem , Células Vero , Replicação Viral/efeitos dos fármacos
3.
Antiviral Res ; 116: 34-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637710

RESUMO

Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform.


Assuntos
Antivirais/farmacologia , Heparitina Sulfato/farmacologia , Lipossomos , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Antivirais/química , Heparitina Sulfato/administração & dosagem , Vírus da Parainfluenza 3 Humana/crescimento & desenvolvimento , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Simplexvirus/crescimento & desenvolvimento , Células Vero
4.
Proc Natl Acad Sci U S A ; 101(5): 1315-20, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14739339

RESUMO

Human neonates infected with herpes simplex virus 1 (HSV-1) develop one of three distinct patterns of infection: (i) infection limited to the skin, eye or mouth; (ii) infection of the CNS; or (iii) disseminated infection. The disseminated form usually involves the liver, adrenal gland, and lung, and resembles the clinical picture of bacterial sepsis. This spectrum of symptoms in HSV-1-infected neonates suggests that inflammatory cytokines play a significant role in the pathogenesis of the disease. Recent studies suggest that the Toll-like receptors (TLRs) may play an important role in the induction of inflammatory cytokines in response to viruses. TLRs are mammalian homologues of Toll, a Drosophila protein that is essential for host defense against infection. Engagement of TLRs by bacterial, viral, or fungal components leads to the production and release of cytokines and other antimicrobial products. Here, we demonstrate that TLR2 mediates the inflammatory cytokine response to HSV-1 by using both transfected cell lines and knockout mice. Studies of infected mice revealed that HSV-1 induced a blunted cytokine response in TLR2(-/-) mice. Brain levels of monocyte chemoattractant protein 1 chemokine were significantly lower in TLR2(-/-) mice than in either wild-type or TLR4(-/-) mice. TLR2(-/-) mice had reduced mortality compared with wild-type mice. The differences between TLR2(-/-) mice and both wild-type and TLR4(-/-) mice in the induction of monocyte chemoattractant protein 1, brain inflammation, or mortality could not be accounted for on the basis of virus levels. Thus, these studies suggest the TLR2-mediated cytokine response to HSV-1 is detrimental to the host.


Assuntos
Encefalite Viral/etiologia , Herpes Simples/etiologia , Herpesvirus Humano 1/patogenicidade , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Linhagem Celular , Quimiocina CCL2/biossíntese , Humanos , Interleucina-6/biossíntese , Interleucina-6/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA