Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 138(9): 1807-16, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21447550

RESUMO

Each vertebrate species displays specific tooth patterns in each quadrant of the jaw: the mouse has one incisor and three molars, which develop at precise locations and at different times. The reason why multiple teeth form in the jaw of vertebrates and the way in which they develop separately from each other have been extensively studied, but the genetic mechanism governing the spatial patterning of teeth still remains to be elucidated. Sonic hedgehog (Shh) is one of the key signaling molecules involved in the spatial patterning of teeth and other ectodermal organs such as hair, vibrissae and feathers. Sostdc1, a secreted inhibitor of the Wnt and Bmp pathways, also regulates the spatial patterning of teeth and hair. Here, by utilizing maternal transfer of 5E1 (an anti-Shh antibody) to mouse embryos through the placenta, we show that Sostdc1 is downstream of Shh signaling and suggest a Wnt-Shh-Sostdc1 negative feedback loop as a pivotal mechanism controlling the spatial patterning of teeth. Furthermore, we propose a new reaction-diffusion model in which Wnt, Shh and Sostdc1 act as the activator, mediator and inhibitor, respectively, and confirm that such interactions can generate the tooth pattern of a wild-type mouse and can explain the various tooth patterns produced experimentally.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Retroalimentação Fisiológica/fisiologia , Proteínas Hedgehog/fisiologia , Dente/embriologia , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Simulação por Computador , Embrião de Mamíferos , Epistasia Genética/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , Modelos Teóricos , Odontogênese/genética , Odontogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Dente/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
2.
Histochem Cell Biol ; 137(1): 67-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072420

RESUMO

Various cellular and molecular events are involved in palatogenesis, including apoptosis, epithelial-mesenchymal transition (EMT), cell proliferation, and cell migration. Smad2 and Snail, which are well-known key mediators of the transforming growth factor beta (Tgf-ß) pathway, play a crucial role in the regulation of palate development. Regulatory effects of microRNA 200b (miR-200b) on Smad2 and Snail in palatogenesis have not yet been elucidated. The aim of this study is to determine the relationship between palate development regulators miR-200b and Tgf-ß-mediated genes. Expression of miR-200b, E-cadherin, Smad2, and Snail was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium (MEE) and palatal mesenchyme. After the contact of palatal shelves, miR-200b was no longer expressed in the mesenchyme around the fusion region. The binding activity of miR-200b to both Smad2 and Snail was examined using a luciferase assay. MiR-200b directly targeted Smad2 and Snail at both cellular and molecular levels. The function of miR-200b was determined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of these Tgf-ß-mediated regulators and changes of apoptosis and cell proliferation in the palatal fusion region. These results suggest that miR-200b plays a crucial role in regulating the Smad2, Snail, and in apoptosis during palatogenesis by acting as a direct non-coding, influencing factor. Furthermore, the molecular interactions between miR-200b and Tgf-ß signaling are important for proper palatogenesis and especially for palate fusion. Elucidating the mechanism of palatogenesis may aid the design of effective gene-based therapies for the treatment of congenital cleft palate.


Assuntos
MicroRNAs/metabolismo , Palato/crescimento & desenvolvimento , Palato/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Palato/citologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética
3.
Cell Tissue Res ; 341(2): 251-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20563598

RESUMO

Teeth, an excellent model for studying organogenesis, develop from a series of epithelial-mesenchymal interactions that are mediated by a complex molecular network. Bcor (BCL-6 interacting corepressor) has recently been discovered, but little is known about its function in tooth development. Mutations in BCOR affect humans with oculofaciocardiodental syndrome, which is an X-linked dominant disorder with presumed male lethality and which comprises microphthalmia, congenital cataracts, radiculomegaly, and cardiac and digital abnormalities. In this study, the Bcor expression pattern has been intensively investigated during mouse molar development. Bcor is expressed in both dental epithelium and the mesenchyme at E11.5. To understand the function of Bcor, knockdown of Bcor has been examined by using lentivirus-mediated RNA interference. Silencing of Bcor expression in dental mesenchymal cells at E14.5 causes dentinogenesis defects and retardation of tooth root development. Thus, our results suggest that Bcor expressed in the mesenchyme plays crucial roles during early tooth development. The function of Bcor expressed in the epithelium remains to be elucidated.


Assuntos
Mesoderma/embriologia , Odontogênese , Proteínas Repressoras/metabolismo , Dente/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lentivirus/genética , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Odontogênese/genética , Interferência de RNA , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Dente/metabolismo
4.
Dev Biol ; 314(2): 341-50, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18191119

RESUMO

Various cellular and molecular events underlie the elevation and fusion of the developing palate that occurs during embryonic development. This includes convergent extension, where the medial edge epithelium is intercalated into the midline epithelial seam. We examined the expression patterns of Wnt11 and Fgfr1b - which are believed to be key factors in convergent extension - in mouse palate development. Wnt-11 overexpression and beads soaked in SU5402 (an Fgfr1 inhibitor) were employed in in vitro organ cultures. The results suggested that interactions between Wnt11 and Fgfr1b are important in modulating cellular events such as cell proliferation for growth and apoptosis for fusion. Moreover, the Wnt11 siRNA results showed that Wnt11-induced apoptosis was necessary for palatal fusion. In summary, Fgfr1b induces cell proliferation in the developing palate mesenchyme so that the palate grows and contacts each palatal shelf, with negative feedback of Fgfs triggered by excessive cell proliferation then inhibiting the expression of Fgfr1b and activating the expression of Wnt11 to fuse each palate by activating apoptosis.


Assuntos
Palato/citologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Wnt/fisiologia , Envelhecimento/fisiologia , Animais , Eletroporação , Imuno-Histoquímica , Hibridização In Situ , Maxila/citologia , Maxila/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Cultura de Órgãos , Palato/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Receptor Cross-Talk/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Wnt/genética
5.
Histochem Cell Biol ; 131(5): 593-603, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225803

RESUMO

Rodent incisors are continuously growing teeth that include all stages of amelogenesis. Understanding amelogenesis requires investigations of the genes and their gene products control the ameloblast phenotype. One of the mechanisms related to tooth differentiation is mitogen-activated protein kinase (MAPK) signaling. The extracellular-signal regulated kinase (ERK)/mitogen-activated protein kinase kinase (MEK) cascade is associated with mechanisms that control the cell cycle and cell survival. However, the roles of cascades in incisor development remain to be determined. In this study, we investigated incisor development and growth in the mouse based on MAPK signaling. Moreover, heat-shock protein (Hsp)-25 is well known to be a useful marker of odontoblast differentiation. We used anisomycin (a protein-synthesis inhibitor that activates MAPKs) and U0126 (a MAPK inhibitor that blocks ERK1/2 phosphorylation) to examine the role of MAPKs in Hsp25 signaling in the development of the mouse incisor. We performed immunohistochemistry and in vitro culture using incisor tooth germ, and found that phospho-ERK (pERK), pMEK, and Hsp25 localized in developing incisor ameloblasts and anisomycin failed to produce incisor development. In addition, Western blotting results showed that anisomycin stimulated the phosphorylation of ERK, MEK, and Hsp25, and that some of these proteins were blocked by the U0126. These findings suggest that MAPK signals play important roles in incisor formation, differentiation, and development by mediating Hsp25 signaling.


Assuntos
Ameloblastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico/metabolismo , Incisivo/crescimento & desenvolvimento , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Neoplasias/metabolismo , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Animais , Anisomicina/farmacologia , Butadienos/farmacologia , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Proteínas de Choque Térmico/efeitos dos fármacos , Incisivo/efeitos dos fármacos , Incisivo/metabolismo , Antígeno Ki-67/efeitos dos fármacos , Antígeno Ki-67/metabolismo , MAP Quinase Quinase Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Chaperonas Moleculares , Proteínas de Neoplasias/efeitos dos fármacos , Nitrilas/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA