Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 87(3): 591-599, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38442389

RESUMO

A new polyol polyketide, named retinestatin (1), was obtained and characterized from the culture of a Streptomyces strain, which was isolated from a subterranean nest of the termite Reticulitermes speratus kyushuensis Morimoto. The planar structure of 1 was elucidated on the basis of the cumulative analysis of ultraviolet, infrared, mass spectrometry, and nuclear magnetic resonance spectroscopic data. The absolute configuration of 1 at 12 chiral centers was successfully assigned by employing a J-based configuration analysis in combination with ROESY correlations, a quantum mechanics-based computational approach to calculate NMR chemical shifts, and a 3 min flash esterification by Mosher's reagents followed by NMR analysis. Biological evaluation of retinestatin (1) using an in vitro model of Parkinson's disease revealed that 1 protected SH-SY5Y dopaminergic cells from MPP+-induced cytotoxicity, indicating its neuroprotective effects.


Assuntos
Isópteros , Neuroblastoma , Policetídeos , Polímeros , Streptomyces , Animais , Humanos , Policetídeos/química , Estrutura Molecular , Streptomyces/química
2.
Mar Drugs ; 15(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216577

RESUMO

Based on profiles of secondary metabolites produced by marine bacteria obtained using LC/MS, succinilenes A-D (1-4), new triene polyols, were discovered from a culture of a Streptomyces strain SAK1, which was collected in the southern area of Jeju Island, Republic of Korea. The gross structures of 1-4 were primarily determined through analysis of NMR spectra. The double bond geometries of the succinilenes, which could not be established from conventional ¹H NMR spectra because of the highly overlapped olefinic signals, were successfully deciphered using the recently developed quantum-mechanics-driven ¹H iterative full spin analysis (QM-HiFSA). Succinilenes A-C (1-3) displayed inhibitory effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, indicating their anti-inflammatory significance. These three compounds (1-3) commonly bear a succinic acid moiety, although succinilene D (4), which did not inhibit NO production, does not have this moiety in its structure. The absolute configurations of succinilenes A-D (1-4) were established through J-based configuration analysis, the modified Mosher's method following methanolysis, and CD spectral analysis.


Assuntos
Anti-Inflamatórios/química , Organismos Aquáticos/metabolismo , Polímeros/química , Streptomyces/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Óxido Nítrico/metabolismo , República da Coreia , Ácido Succínico/química
3.
Biochem Biophys Res Commun ; 430(4): 1294-300, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23261471

RESUMO

Since pheochromocytoma 12 (PC12) cells have the ability of neuronal differentiation upon nerve growth factor (NGF) treatment, they are a good model for studying the neuronal differentiation. Establishing a strong adhesion of PC12 cells to the culture substrate may increase neuronal differentiation, and the use of L-3,4-dihydroxyphenylalanine (L-DOPA), which is responsible for the adhesive property of mussel adhesive proteins (MAPs), is a feasible strategy for such strong adhesion. We hypothesized that a polydopamine-modified surface can promote PC12 cell adhesion and subsequent neuronal differentiation. We examined whether polydopamine-modified surface promotes PC12 cell adhesion, and further evaluated the neuronal differentiation of these cells. The polydopamine modification enhanced the cell adhesion and viability, and also promoted the neuronal differentiation of NGF-stimulated PC12 cells, as evidenced by the elongation of neurites and expression of neuronal differentiation markers, by increasing the activation of NGF/Trk-Rho GTPase signal pathway. Our findings will help develop an improved strategy for functionalizing biomaterial substrates for less-adhesive cells including neural cells.


Assuntos
Indóis/química , Neurogênese/fisiologia , Neurônios/citologia , Polímeros/química , Animais , Apoptose , Técnicas de Cultura de Células , Modelos Biológicos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas/metabolismo , Células PC12 , Ratos , Transdução de Sinais , Propriedades de Superfície , Proteínas rho de Ligação ao GTP/metabolismo
4.
PLoS One ; 17(7): e0270092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862372

RESUMO

A novel contact model is presented to efficiently solve a face-mask contact problem by using the finite element (FE) method for the optimized design of a custom facial mask. Simulation of contact pressure for various mask designs considering material properties of the face allows virtual evaluation of the suitability of a mask design for a person's face without conducting empirical measurement of the face-mask contact pressure. The proposed contact model is accomplished by combining three approaches to reduce the calculation cost of simulating the face-mask contact: (1) use of a simplified and modifiable mask model that applies a spline curve to design points; (2) reduction of the FE model of the face by applying static condensation; and (3) application of a contact assumption that uses the Lagrange multiplier method. A numerical case study of a medical mask design showed that the proposed model could calculate the face-mask contact pressure efficiently (0.0448 sec per design). In a pilot usability experiment, the measured contact pressure was found similar values (range of mean contact pressure: 0.0093 ~ 0.0150 MPa) to the estimated values (range of mean contact pressure: 0.0097 ~ 0.0116 MPa).


Assuntos
Aparelhos de Tração Extrabucal , Máscaras , Simulação por Computador , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA