Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314052

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Am J Med Genet A ; 191(9): 2274-2289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37387251

RESUMO

Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.


Assuntos
Senilidade Prematura , Disostoses , Lipodistrofia Parcial Familiar , Distrofias Musculares , Progéria , Humanos , Síndrome , Lipodistrofia Parcial Familiar/complicações , Clavícula/metabolismo , Clavícula/patologia , Mutação , Progéria/patologia , Disostoses/complicações , Lamina Tipo A/genética
3.
Hum Mol Genet ; 28(14): 2378-2394, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090908

RESUMO

Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot-Marie-Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system. Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease'.


Assuntos
Corpos Enovelados/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/citologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Adulto , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação , Fenótipo , Inibidores de Proteassoma/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Sequenciamento do Exoma
4.
Clin Genet ; 100(1): 84-89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33733462

RESUMO

STIM1, the stromal interaction molecule 1, is the key protein for maintaining calcium concentration in the endoplasmic reticulum by triggering the Store Operated Calcium Entry (SOCE). Bi-allelic mutations in STIM1 gene are responsible for a loss-of-function in patients affected with a CRAC channelopathy syndrome in which severe combined immunodeficiency syndrome (SCID-like), autoimmunity, ectodermal dysplasia and muscle hypotonia are combined. Here, we studied two siblings from a consanguineous Syrian family, presenting with muscle weakness, hyperlaxity, elastic skin, tooth abnormalities, dysmorphic facies, hypoplastic patellae and history of respiratory infections. Using exome sequencing, we have identified a new homozygous frameshift mutation in STIM1: c.685delT [p.(Phe229Leufs*12)], leading to a complete loss of STIM1 protein. In this study, we describe an unusual phenotype linked to STIM1 mutations, combining clinical signs usually observed in different STIM1-related diseases. In particular, we confirmed that the complete loss of STIM1 function is not always associated with severe immune disorders. Altogether, our results broaden the spectrum of phenotypes associated with mutations in STIM1 and opens new perspectives on the pathological mechanisms associated with a defect in the proteins constituting the SOCE complex.


Assuntos
Perda de Heterozigosidade/genética , Mutação/genética , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética , Adolescente , Cálcio/metabolismo , Retículo Endoplasmático/genética , Feminino , Homozigoto , Humanos , Masculino , Hipotonia Muscular/genética , Fenótipo , Imunodeficiência Combinada Severa/genética
5.
Eur J Neurol ; 28(9): 2913-2921, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060176

RESUMO

BACKGROUND AND PURPOSE: Preparations for clinical trials of unfolded protein response (UPR) inhibitors (such as Sephin1) that target the upregulated UPR in patients with Charcot-Marie-Tooth disease (CMT) carrying MPZ mutations are currently underway. The inclusion criteria for these trials are still being formulated. Our objective was to characterize the relation between genotypes and phenotypes in patients with CMT caused by MPZ mutations, and to refine the inclusion criteria for future trials. METHODS: Clinical and neurophysiological data of CMT patients with MPZ mutations were retrospectively collected at 11 French reference centers. RESULTS: Forty-four mutations in MPZ were identified in 91 patients from 61 families. There was considerable heterogeneity. The same mutation was found to cause either axonal or demyelinating neuropathy. Three groups were identified according to the age at disease onset. CMT Examination Score (CMTES) tended to be higher in the early (≤22 years) and adult (23-47 years) onset groups (mean CMTESv2 = 10.4 and 10.0, respectively) than in the late onset group (>47 years, mean CMTESv2 = 8.6, p = 0.47). There was a significant positive correlation between CMTESv2 and the age of patients in Groups I (p = 0.027) and II (p = 0.023), indicating that clinical severity progressed with age in these patients. CONCLUSIONS: To optimize the selection of CMT patients carrying MPZ mutations for the upcoming trials, inclusion criteria should take into account the pathophysiology of the disease (upregulated UPR). Recruited patients should have a mild to moderate disease severity and a disease onset at between 18 and 50 years, as these patients exhibit significant disease progression over time.


Assuntos
Doença de Charcot-Marie-Tooth , Proteína P0 da Mielina , Doença de Charcot-Marie-Tooth/genética , Estudos de Associação Genética , Humanos , Mutação , Proteína P0 da Mielina/genética , Fenótipo , Estudos Retrospectivos
6.
Ann Neurol ; 86(1): 55-67, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070812

RESUMO

OBJECTIVE: Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS: We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS: There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION: This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estudos Retrospectivos , Adulto Jovem
7.
BMC Med Genet ; 15: 51, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24886349

RESUMO

BACKGROUND: SHORT syndrome is a rare autosomal dominant condition whose name is the acronym of short stature, hyperextensibility of joints, ocular depression, Rieger anomaly and teething delay (MIM 269880). Additionally, the patients usually present a low birth weight and height, lipodystrophy, delayed bone age, hernias, low body mass index and a progeroid appearance. CASE PRESENTATION: In this study, we used whole-exome sequencing approaches in two patients with clinical features of SHORT syndrome. We report the finding of a novel mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8), as well as a recurrent mutation c.1945C > T (p.Arg649Trp) in this gene. CONCLUSIONS: We found a novel frameshift mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8) which consists of a deletion right before the site of substrate recognition. As a consequence, the protein lacks the position that interacts with the phosphotyrosine residue of the substrate, resulting in the development of SHORT syndrome.


Assuntos
Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Mutação , Nefrocalcinose/diagnóstico , Nefrocalcinose/genética , Fosfatidilinositol 3-Quinases/genética , Substituição de Aminoácidos , Pré-Escolar , Classe Ia de Fosfatidilinositol 3-Quinase , Análise Mutacional de DNA , Exoma , Fácies , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Modelos Moleculares , Fenótipo , Fosfatidilinositol 3-Quinases/química , Conformação Proteica
8.
Ann Hum Genet ; 77(4): 336-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23550889

RESUMO

Charcot-Marie-Tooth (CMT) disease constitutes a clinically and genetically heterogeneous group of hereditary neuropathies characterized by progressive muscular and sensory loss in the distal extremities with chronic distal weakness, deformation of the feet, and loss of deep tendon reflexes. CMT4H is an autosomal recessive demyelinating subtype of CMT, due to mutations in FGD4/FRABIN, for which nine mutations are described to date. In this study, we describe three patients from a consanguineous Tunisian family, presenting with severe, early onset, slowly progressive, autosomal recessive demyelinating CMT, complicated by mild to severe kyphoscoliosis, consistent with CMT4H. In these patients, we report the identification of a novel homozygous frameshift mutation in FGD4: c.514_515insG; p.Ala172Glyfs*27. Our study reports the first mutation identified in FGD4 in Tunisian patients affected with CMT. It further confirms the important clinical heterogeneity observed in patients with mutations in FGD4 and the lack of phenotype/genotype correlations in CMT4H. Our results suggest that FGD4 should be screened in other early-onset CMT subtypes, regardless of the severity of the phenotype, and particularly in patients of consanguineous descent. In Tunisians, as in other populations with high consanguinity rates, screening of genes responsible for rare autosomal recessive CMT subtypes should be prioritized.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Proteínas dos Microfilamentos/genética , Mutação , Adolescente , Biópsia , Doença de Charcot-Marie-Tooth/diagnóstico , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Fibras Nervosas Mielinizadas/patologia , Linhagem , Fenótipo , Tunísia , Adulto Jovem
9.
Am J Med Genet A ; 158A(11): 2881-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22991222

RESUMO

Hutchinson-Gilford Progeria syndrome (HGPS) is a rare genetic disorder, characterized by several clinical features that begin in early childhood, recalling an accelerated aging process. The diagnosis of HGPS is based on the recognition of common clinical features and detection of the recurrent heterozygous c.1824C>T (p.Gly608Gly) mutation within exon 11 in the Lamin A/C encoding gene (LMNA). Besides "typical HGPS," several "atypical progeria" syndromes (APS) have been described, in a clinical spectrum ranging from mandibuloacral dysplasia to atypical Werner syndrome. These patients's clinical features include progeroid manifestations, such as short stature, prominent nose, premature graying of hair, partial alopecia, skin atrophy, lipodystrophy, skeletal anomalies, such as mandibular hypoplasia and acroosteolyses, and in some cases severe atherosclerosis with metabolic complications. APS are due in several cases to de novo heterozygous LMNA mutations other than the p.Gly608Gly, or due to homozygous BAFN1 mutations in Nestor-Guillermo Progeria syndrome (NGPS). We report here and discuss the observation of a non-consanguineous Moroccan patient presenting with atypical progeria. The molecular studies showed the heterozygous mutation c.412G>A (p.Glu138Lys) of the LMNA gene. This mutation, previously reported as a de novo mutation, was inherited from the apparently healthy father who showed a somatic cell mosaicism.


Assuntos
Lamina Tipo A/genética , Mutação , Progéria/genética , Sequência de Bases , Criança , Éxons , Evolução Fatal , Feminino , Heterozigoto , Humanos , Fenótipo , Progéria/diagnóstico
10.
J Peripher Nerv Syst ; 17(2): 141-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734899

RESUMO

By sequencing of the FGD4 coding sequence in a cohort of 101 patients affected by autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT), we have identified two novel missense mutations in FGD4 in two patients from consanguineous descent: p.Arg442His in an Algerian patient and p.Met566Ile in a Lebanese girl. The patients present early onset, slowly progressive CMT, with drastic reduction of nerve conduction velocities. These mutations are the second and third missense mutations characterized in FGD4. They are likely to lead to conformational changes in the PH1 and FYVE domains.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto , Adolescente , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Genes (Basel) ; 13(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205364

RESUMO

Next generation sequencing (NGS) is strategically used for genetic diagnosis in patients with Charcot-Marie-Tooth disease (CMT) and related disorders called non-syndromic inherited peripheral neuropathies (NSIPN) in this paper. With over 100 different CMT-associated genes involved and ongoing discoveries, an important interlaboratory diversity of gene panels exists at national and international levels. Here, we present the work of the French National Network for Rare Neuromuscular Diseases (FILNEMUS) genetic diagnosis section which coordinates the seven French diagnosis laboratories using NGS for peripheral neuropathies. This work aimed to establish a unique, simple and accurate gene classification based on literature evidence. In NSIPN, three subgroups were usually distinguished: (1) HMSN, Hereditary Motor Sensory Neuropathy, (2) dHMN, distal Hereditary Motor Neuropathy, and (3) HSAN, Hereditary Sensory Autonomic Neuropathy. First, we reported ClinGen evaluation, and second, for the genes not evaluated yet by ClinGen, we classified them as "definitive" if reported in at least two clinical publications and associated with one report of functional evidence, or "limited" otherwise. In total, we report a unique consensus gene list for NSIPN including the three subgroups with 93 genes definitive and 34 limited, which is a good rate for our gene's panel for molecular diagnostic use.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatias Hereditárias Sensoriais e Autônomas , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Patologia Molecular
12.
J Neuromuscul Dis ; 9(1): 193-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602496

RESUMO

BACKGROUND: Clinical and molecular data on the occurrence and frequency of inherited neuromuscular disorders (NMD) in the Lebanese population is scarce. OBJECTIVE: This study aims to provide a retrospective overview of hereditary NMDs based on our clinical consultations in Lebanon. METHODS: Clinical and molecular data of patients referred to a multi-disciplinary consultation for neuromuscular disorders over a 20-year period (1999-2019) was reviewed. RESULTS: A total of 506 patients were diagnosed with 62 different disorders encompassing 10 classes of NMDs. 103 variants in 49 genes were identified. In this cohort, 81.4% of patients were diagnosed with motor neuron diseases and muscular dystrophies, with almost half of these described with spinal muscular atrophy (SMA) (40.3% of patients). We estimate a high SMA incidence of 1 in 7,500 births in Lebanon. Duchenne and Becker muscular dystrophy were the second most frequently diagnosed NMDs (17% of patients). These disorders were associated with the highest number of variants (39) identified in this study. A highly heterogeneous presentation of Limb Girdle Muscular Dystrophy and Charcot-Marie-Tooth disease was notably identified. The least common disorders (5.5% of patients) involved congenital, metabolic, and mitochondrial myopathies, congenital myasthenic syndromes, and myotonic dystrophies. A review of the literature for selected NMDs in Lebanon is provided. CONCLUSIONS: Our study indicates a high prevalence and underreporting of heterogeneous forms of NMDs in Lebanon- a major challenge with many novel NMD treatments in the pipeline. This report calls for a regional NMD patient registry.


Assuntos
Doença dos Neurônios Motores/epidemiologia , Doença dos Neurônios Motores/genética , Distrofias Musculares/epidemiologia , Distrofias Musculares/genética , Adolescente , Adulto , Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Líbano/epidemiologia , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular de Duchenne/epidemiologia , Distrofia Muscular de Duchenne/genética , Estudos Retrospectivos , Adulto Jovem
13.
Neurogenetics ; 12(1): 73-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20721593

RESUMO

Dentoleukoencephalopathies with autosomal recessive inheritance are very rare. Recently, a large inbred Syrian pedigree was reported with oligodontia in association with a degenerative neurologic condition characterized by progressive ataxia and pyramidal syndrome and abnormalities in the white matter and cortical atrophy. A whole-genome screening of this family using 382 microsatellite markers was completed, but no evidence was found of linkage to any chromosomal region. A genome-wide linkage analysis using the 260K single nucleotide polymorphism Affymetrix array was then undertaken and a maximum multipoint logarithm of the odds score of 5.66 (NPL score = 7.65) was detected on chromosome 10q22 region. This genomic interval contains 95 known genes including the Prosaposin gene (PSAP) responsible for metachromatic leukodystrophy, which was excluded. Seventeen additional candidate genes were tested and excluded. Sequencing of the whole candidate locus is in progress and should allow the identification of the causative gene in this rare disease, thereby improving the understanding of the physiopathology of this disease.


Assuntos
Anodontia/genética , Cromossomos Humanos Par 10/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Adolescente , Idade de Início , Criança , Consanguinidade , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla , Humanos , Escore Lod , Masculino , Repetições de Microssatélites , Linhagem , Polimorfismo de Nucleotídeo Único , Síria
14.
Pediatr Dermatol ; 28(4): 408-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21121943

RESUMO

A 4-day-old boy presented with tight, translucent skin, prominent vessels, skin erosions, and dysmorphic findings, including hypertelorism, antimongoloid axis, sparse eyelashes and eyebrows, pinched nose, natal teeth, microretrognathia, and an "o-shaped" mouth. Multiple joint contractures, dysplastic clavicles, and thin ribs were also observed. He died at 2 weeks of age of respiratory distress. The patient was diagnosed as being affected with restrictive dermopathy, which is a rare, lethal genodermatosis caused by recessive mutations of the zinc metalloproteinase ZMPSTE24 gene or less frequently, by dominant lamin A/C gene mutations. Direct sequencing of the ZMPSTE24 gene was performed, and the most common, homozygous, inactivating mutation in exon 9 was identified in the patient (c.1085_1086insT; p.Leu362PhefsX19). Autosomal recessive transmission was confirmed by parental DNA analysis. After genetic counseling, a prenatal diagnosis could be performed during the subsequent pregnancy. ZMPSTE24 screening was performed by direct sequencing and fluorescent fragment analysis on DNA derived from a chorionic villus sample after exclusion of maternal contamination. The fetus had inherited both normal parental alleles, avoiding the recurrence of the disease.


Assuntos
Contratura/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Anormalidades da Pele/genética , Sequência de Bases , Amostra da Vilosidade Coriônica , Contratura/diagnóstico , Éxons , Evolução Fatal , Feminino , Aconselhamento Genético , Testes Genéticos , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Mutação , Anormalidades da Pele/diagnóstico
15.
Brain ; 132(Pt 10): 2699-711, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651702

RESUMO

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype-phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.


Assuntos
Marcadores Genéticos/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Adulto , Idoso , Proteínas de Transporte/genética , Chaperonina com TCP-1/genética , Estudos de Coortes , Análise Mutacional de DNA , Éxons/genética , Feminino , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Biologia Molecular , Paternidade , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina C-Palmitoiltransferase/genética , Fatores de Elongação da Transcrição , Proteína Quinase 1 Deficiente de Lisina WNK , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
16.
Mol Genet Genomic Med ; 8(8): e1277, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32537934

RESUMO

BACKGROUND: GLE1 (GLE1, RNA Export Mediator, OMIM#603371) variants are associated with severe autosomal recessive motor neuron diseases, that are lethal congenital contracture syndrome 1 (LCCS1, OMIM#253310) and congenital arthrogryposis with anterior horn cell disease (CAAHD, OMIM#611890). The clinical spectrum of GLE1-related disorders has been expanding these past years, including with adult-onset amyotrophic lateral sclerosis (ALS) GLE1-related forms, especially through the new molecular diagnosis strategies associated with the emergence of next-generation sequencing (NGS) technologies. However, despite this phenotypic variability, reported congenital or ALS adult-onset forms remain severe, leading to premature death. METHODS: Through multidisciplinary interactions between our Neuropediatric and Medical Genetics departments, we were able to diagnose two siblings presenting with congenital disorder, using an NGS approach accordingly to the novel French national recommendations. RESULTS: Two siblings with very similar clinical features, meaning neuromuscular disorder of neonatal onset with progressive improvement, were examined in our Neuropediatrics department. The clinical presentation evoked initially congenital myopathy with autosomal recessive inheritance. However, additional symptoms such as mild dysmorphic features including high anterior hairline, downslanted palpebral fissures, anteverted nares, smooth philtrum with thin upper-lip, narrow mouth and microretrognathia or delayed expressive language and postnatal growth retardation were suggestive of a more complex clinical presentation and molecular diagnosis. Our NGS approach revealed an unexpected molecular diagnosis for these two siblings, meaning the presence of the homozygous c.1808G>T GLE1 variant. CONCLUSIONS: We here report the mildest phenotype ever described, in two siblings carrying the homozygous c.1808G>T GLE1 variant, further widening the clinical spectrum of GLE1-related diseases. Moreover, by reflecting current medical practice, this case report confirms the importance of establishing regular multidisciplinary meetings, essential for discussing such difficult clinical presentations to finally enable molecular diagnosis, especially when NGS technologies are used.


Assuntos
Miotonia Congênita/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Fenótipo , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Masculino , Miotonia Congênita/patologia , Linhagem , Mutação Puntual
17.
Nat Commun ; 11(1): 4589, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917887

RESUMO

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


Assuntos
Acro-Osteólise/metabolismo , Predisposição Genética para Doença/genética , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Acro-Osteólise/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proliferação de Células , Criança , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Homozigoto , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/patologia , Masculino , Mandíbula/diagnóstico por imagem , Proteínas de Membrana/genética , Metaloendopeptidases , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Pele , Sequenciamento Completo do Genoma
18.
BMJ Open ; 8(10): e021632, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373780

RESUMO

PURPOSE: Inherited peripheral neuropathies (IPN) represent a large heterogenous group of hereditary diseases with more than 100 causative genes reported to date. In this context, targeted next-generation sequencing (NGS) offers the opportunity to screen all these genes with high efficiency in order to unravel the genetic basis of the disease. Here, we compare the diagnostic yield of targeted NGS with our previous gene by gene Sanger sequencing strategy. We also describe several novel likely pathogenic variants. DESIGN AND PARTICIPANTS: We have completed the targeted NGS of 81 IPN genes in a cohort of 123 unrelated patients affected with diverse forms of IPNs, mostly Charcot-Marie-Tooth disease (CMT): 23% CMT1, 52% CMT2, 9% distal hereditary motor neuropathy, 7% hereditary sensory and autonomic neuropathy and 6.5% intermediate CMT. RESULTS: We have solved the molecular diagnosis in 49 of 123 patients (~40%). Among the identified variants, 26 variants were already reported in the literature. In our cohort, the most frequently mutated genes are respectively: MFN2, SH3TC2, GDAP1, NEFL, GAN, KIF5A and AARS. Panel-based NGS was more efficient in familial cases than in sporadic cases (diagnostic yield 49%vs19%, respectively). NGS-based search for copy number variations, allowed the identification of three duplications in three patients and raised the diagnostic yield to 41%. This yield is two times higher than the one obtained previously by gene Sanger sequencing screening. The impact of panel-based NGS screening is particularly important for demyelinating CMT (CMT1) subtypes, for which the success rate reached 87% (36% only for axonal CMT2). CONCLUSION: NGS allowed to identify causal mutations in a shorter and cost-effective time. Actually, targeted NGS is a well-suited strategy for efficient molecular diagnosis of IPNs. However, NGS leads to the identification of numerous variants of unknown significance, which interpretation requires interdisciplinary collaborations between molecular geneticists, clinicians and (neuro)pathologists.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças do Sistema Nervoso Periférico/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Adulto Jovem
19.
Neuromuscul Disord ; 17(2): 163-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17142040

RESUMO

Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal recessive demyelinating polyneuropathy, associated with deafness exclusively found in Gypsies and resulting from a homozygous R148X mutation in the N-myc downstream-regulated gene 1 (NDRG1). We report the detailed phenotypic study of a family without Gypsy ancestry, who presented with severe demyelinating polyneuropathy, deafness, subcortical white matter abnormalities on brain magnetic resonance imaging studies, and the R148X mutation in NDRG1. For the first time, central nervous system white matter lesions are demonstrated in CMT4D. This report extends the clinical knowledge of CMT4D and indicates that the role of the R148X mutation in NDRG1 in the central nervous system should be further studied.


Assuntos
Proteínas de Ciclo Celular/genética , Sistema Nervoso Central/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Encéfalo/patologia , DNA/genética , Surdez/complicações , Surdez/genética , Surdez/patologia , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Eletrofisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Linhagem , Fenótipo , Polineuropatias/etiologia , Polineuropatias/genética , Polineuropatias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roma (Grupo Étnico)
20.
Metabolism ; 71: 213-225, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28521875

RESUMO

BACKGROUND: Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL) is an autosomal dominant systemic disorder characterized by prominent loss of subcutaneous fat, a characteristic facial appearance and metabolic abnormalities. This syndrome is caused by heterozygous de novo mutations in the POLD1 gene. To date, 19 patients with MDPL have been reported in the literature and among them 14 patients have been characterized at the molecular level. Twelve unrelated patients carried a recurrent in-frame deletion of a single codon (p.Ser605del) and two other patients carried a novel heterozygous mutation in exon 13 (p.Arg507Cys). Additionally and interestingly, germline mutations of the same gene have been involved in familial polyposis and colorectal cancer (CRC) predisposition. PATIENTS AND METHODS: We describe a male and a female patient with MDPL respectively affected with mild and severe phenotypes. Both of them showed mandibular hypoplasia, a beaked nose with bird-like facies, prominent eyes, a small mouth, growth retardation, muscle and skin atrophy, but the female patient showed such a severe and early phenotype that a first working diagnosis of Hutchinson-Gilford Progeria was made. The exploration was performed by direct sequencing of POLD1 gene exon 15 in the male patient with a classical MDPL phenotype and by whole exome sequencing in the female patient and her unaffected parents. RESULTS: Exome sequencing identified in the latter patient a de novo heterozygous undescribed mutation in the POLD1 gene (NM_002691.3: c.3209T>A), predicted to cause the missense change p.Ile1070Asn in the ZnF2 (Zinc Finger 2) domain of the protein. This mutation was not reported in the 1000 Genome Project, dbSNP and Exome sequencing databases. Furthermore, the Isoleucine1070 residue of POLD1 is highly conserved among various species, suggesting that this substitution may cause a major impairment of POLD1 activity. For the second patient, affected with a typical MDPL phenotype, direct sequencing of POLD1 exon 15 revealed the recurrent in-frame deletion (c.1812_1814del, p.S605del). CONCLUSION: Our work highlights that mutations in different POLD1 domains can lead to phenotypic variability, ranging from dominantly inherited cancer predisposition syndromes, to mild MDPL phenotypes without lifespan reduction, to very severe MDPL syndromes with major premature aging features. These results also suggest that POLD1 gene testing should be considered in patients presenting with severe progeroid features.


Assuntos
DNA Polimerase III/genética , Surdez/genética , Exoma/genética , Lipodistrofia/genética , Mutação , Progéria/genética , Idade de Início , Criança , Surdez/patologia , Surdez/psicologia , Éxons/genética , Feminino , Deleção de Genes , Humanos , Lipodistrofia/patologia , Lipodistrofia/psicologia , Masculino , Fenótipo , Progéria/patologia , Progéria/psicologia , Análise de Sequência de Proteína , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA