Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Pharm ; 18(6): 2254-2262, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951909

RESUMO

Poor aqueous drug solubility represents a major challenge in oral drug delivery. A novel approach to overcome this challenge is drug amorphization inside a tablet, that is, on-demand drug amorphization. The amorphous form is a thermodynamically instable, disordered solid-state with increased dissolution rate and solubility compared to its crystalline counterpart. During on-demand drug amorphization, the drug molecularly disperses into a polymer to form an amorphous solid at elevated temperatures inside a tablet. This study investigates, for the first time, the utilization of photothermal plasmonic nanoparticles for on-demand drug amorphization as a new pharmaceutical application. For this, near-IR photothermal plasmonic nanoparticles were tableted together with a crystalline drug (celecoxib) and a polymer (polyvinylpyrrolidone). The tablets were subjected to a near-IR laser at different intensities and durations to study the rate of drug amorphization under each condition. During laser irradiation, the plasmonic nanoparticles homogeneously heated the tablet. The temperature was directly related to the rate and degree of amorphization. Exposure times as low as 180 s at 1.12 W cm-2 laser intensity with only 0.25 wt % plasmonic nanoparticles and up to 50 wt % drug load resulted in complete drug amorphization. Therefore, near-IR photothermal plasmonic nanoparticles are promising excipients for on-demand drug amorphization with laser irradiation.


Assuntos
Celecoxib/química , Composição de Medicamentos/métodos , Excipientes/efeitos da radiação , Lasers , Nanopartículas/efeitos da radiação , Composição de Medicamentos/instrumentação , Excipientes/química , Nanopartículas/química , Povidona/química , Solubilidade/efeitos da radiação , Comprimidos
2.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279377

RESUMO

Laser radiation has been shown to be a promising approach for in situ amorphization, i.e., drug amorphization inside the final dosage form. Upon exposure to laser radiation, elevated temperatures in the compacts are obtained. At temperatures above the glass transition temperature (Tg) of the polymer, the drug dissolves into the mobile polymer. Hence, the dissolution kinetics are dependent on the viscosity of the polymer, indirectly determined by the molecular weight (Mw) of the polymer, the solubility of the drug in the polymer, the particle size of the drug and the molecular size of the drug. Using compacts containing 30 wt% of the drug celecoxib (CCX), 69.25 wt% of three different Mw of polyvinylpyrrolidone (PVP: PVP12, PVP17 or PVP25), 0.25 wt% plasmonic nanoaggregates (PNs) and 0.5 wt% lubricant, the effect of the polymer Mw on the dissolution kinetics upon exposure to laser radiation was investigated. Furthermore, the effect of the model drug on the dissolution kinetics was investigated using compacts containing 30 wt% of three different drugs (CCX, indomethacin (IND) and naproxen (NAP)), 69.25 wt% PVP12, 0.25 wt% PN and 0.5 wt% lubricant. In perfect correlation to the Noyes-Whitney equation, this study showed that the use of PVP with the lowest viscosity, i.e., the lowest Mw (here PVP12), led to the fastest rate of amorphization compared to PVP17 and PVP25. Furthermore, NAP showed the fastest rate of amorphization, followed by IND and CCX in PVP12 due to its high solubility and small molecular size.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celecoxib/química , Raios Infravermelhos , Nanopartículas/química , Povidona/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Celecoxib/administração & dosagem , Estabilidade de Medicamentos , Lasers , Viscosidade
3.
Appl Microbiol Biotechnol ; 104(1): 365-375, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31768610

RESUMO

Microbially induced CaCO3 precipitation (MICP) can give concrete self-healing properties. MICP agents are typically bacterial endospores which are coated into shelled granules, infused into expanded clay, or embedded into superabsorbent polymer (SAP). When small cracks appear in the cured concrete, the encapsulation is broken and the metabolic CO2 production from the germinated bacteria causes healing of the cracks by precipitation of CaCO3. Such systems are being tested empirically at large scales, but survival of endospores through preparation and application, as well as germination and growth kinetics of the germinated vegetative cells, remains poorly resolved. We encapsulated endospores of Bacillus subtilis and Bacillus alkalinitrilicus in crosslinked acrylamide-based SAP and quantified their germination, growth, and, in the case of B. alkalinitrilicus, CaCO3 precipitation potential. The endospores survived crosslinking and desiccation inside the polymer matrix. Microcalorimetry and microscopy showed that ~ 80% of the encapsulated endospores of both strains readily germinated after rehydration of freeze-dried SAP. Germinated cells grew into dense colonies of cells inside the SAP, and those of B. alkalinitrilicus calcified with up to 0.3 g CaCO3 produced per g desiccated SAP when incubated aerobically. Measurements by planar optodes indicated that the precipitation rates were inherently oxygen limited due to diffusional constraints, rather than limited by electron donor or Ca2+ availability. Such oxygen limitation will limit MICP in all water-saturated and oxygen-dependent systems, and MICP agents based on anaerobic bacteria, e.g., nitrate reducers, should be developed to broaden the applicability of bioactive self-healing concretes to wet and waterlogged environments.


Assuntos
Bacillus subtilis/metabolismo , Bacillus/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Polímeros/química , Acrilamida/química , Bacillus/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Bactérias Aeróbias/crescimento & desenvolvimento , Bactérias Aeróbias/metabolismo , Fenômenos Bioquímicos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Esporos Bacterianos/metabolismo , Água/metabolismo
4.
Molecules ; 25(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121006

RESUMO

The aim of the study was to investigate the suitability of a convection oven to induce in situ amorphization. The study was conducted using microwave radiation-induced in situ amorphization as reference, as it has recently been shown to enable the preparation of a fully (100%) amorphous solid dispersion of celecoxib (CCX) in polyvinylpyrrolidone (PVP) after 10 min of continuous microwaving. For comparison, the experimental setup of the microwave-induced method was mimicked for the convection-induced method. Compacts containing crystalline CCX and PVP were prepared and either pre-conditioned at 75% relative humidity or kept dry to investigate the effect of sorbed water on the amorphization kinetics. Subsequently, the compacts were heated for 5, 10, 15, 20, or 30 min in the convection oven at 100 °C. The degree of amorphization of CCX in the compacts was subsequently quantified using transmission Raman spectroscopy. Using the convection oven, the maximum degree of amorphization achieved was 96.1% ± 2.1% (n = 3) for the conditioned compacts after 30 min of heating and 14.3% ± 1.4% (n = 3) for the dry compacts after 20 min of heating, respectively. Based on the results from the convection and the microwave oven, it was found that the sorbed water acts as a plasticizer in the conditioned compacts (i.e., increasing molecular mobility), which is advantageous for in situ amorphization in both methods. Since the underlying mechanism of heating between the convection oven and microwave oven differs, it was found that convection-induced in situ amorphization is inferior to microwave radiation-induced in situ amorphization in terms of amorphization kinetics with the present experimental setup.


Assuntos
Celecoxib/efeitos da radiação , Povidona/efeitos da radiação , Celecoxib/química , Convecção , Calefação/métodos , Temperatura Alta , Cinética , Micro-Ondas , Povidona/química , Análise Espectral Raman , Água/química
5.
Molecules ; 26(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383672

RESUMO

Microwaved-induced in situ amorphization of a drug in a polymer has been suggested to follow a dissolution process, with the drug dissolving into the mobile polymer at temperatures above the glass transition temperature (Tg) of the polymer. Thus, based on the Noyes-Whitney and the Stoke-Einstein equations, the temperature and the viscosity are expected to directly impact the rate and degree of drug amorphization. By investigating two different viscosity grades of polyethylene glycol (PEG), i.e., PEG 3000 and PEG 4000, and controlling the temperature of the microwave oven, it was possible to study the influence of both, temperature and viscosity, on the in situ amorphization of the model drug celecoxib (CCX) during exposure to microwave radiation. In this study, compacts containing 30 wt% CCX, 69 wt% PEG 3000 or PEG 4000 and 1 wt% lubricant (magnesium stearate) were exposed to microwave radiation at (i) a target temperature, or (ii) a target viscosity. It was found that at the target temperature, compacts containing PEG 3000 displayed a faster rate of amorphization as compared to compacts containing PEG 4000, due to the lower viscosity of PEG 3000 compared to PEG 4000. Furthermore, at the target viscosity, which was achieved by setting different temperatures for compacts containing PEG 3000 and PEG 4000, respectively, the compacts containing PEG 3000 displayed a slower rate of amorphization, due to a lower target temperature, than compacts containing PEG 4000. In conclusion, with lower viscosity of the polymer, at temperatures above its Tg, and with higher temperatures, both increasing the diffusion coefficient of the drug into the polymer, the rate of amorphization was increased allowing a faster in situ amorphization during exposure to microwave radiation. Hereby, the theory that the microwave-induced in situ amorphization process can be described as a dissolution process of the drug into the polymer, at temperatures above the Tg, is further strengthened.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celecoxib/química , Excipientes/química , Polietilenoglicóis/química , Cristalização , Liberação Controlada de Fármacos , Micro-Ondas , Solubilidade , Temperatura de Transição , Viscosidade
6.
Pharm Res ; 34(12): 2689-2697, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28929263

RESUMO

PURPOSE: Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated. METHODS: Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC. RESULTS: Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO. CONCLUSIONS: Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.


Assuntos
Anti-Inflamatórios não Esteroides/química , Cimetidina/química , Composição de Medicamentos/métodos , Excipientes/química , Antagonistas dos Receptores H2 da Histamina/química , Indometacina/química , Polietilenoglicóis/química , Varredura Diferencial de Calorimetria , Cristalização , Combinação de Medicamentos , Armazenamento de Medicamentos , Reologia , Viscosidade
7.
Mol Pharm ; 12(9): 3408-19, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26214347

RESUMO

In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.


Assuntos
Acetaminofen/química , Celecoxib/química , Cloranfenicol/química , Estabilidade de Medicamentos , Felodipino/química , Indometacina/química , Polímeros/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização/métodos , Povidona/química , Pirrolidinonas/química , Solubilidade , Termodinâmica , Compostos de Vinila/química
8.
Mol Pharm ; 11(7): 2381-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24852326

RESUMO

Co-amorphous drug mixtures with low-molecular-weight excipients have recently been shown to be a promising approach for stabilization of amorphous drugs and thus to be an alternative to the traditional amorphous solid dispersion approach using polymers. However, the previous studies are limited to a few drugs and amino acids. To facilitate the rational selection of amino acids, the practical importance of the amino acid coming from the biological target site of the drug (and associated intermolecular interactions) needs to be established. In the present study, the formation of co-amorphous systems using cryomilling and combinations of two poorly water-soluble drugs (simvastatin and glibenclamide) with the amino acids aspartic acid, lysine, serine, and threonine was investigated. Solid-state characterization with X-ray powder diffraction, differential scanning calorimetry, and Fourier-transform infrared spectroscopy revealed that the 1:1 molar combinations simvastatin-lysine, glibenclamide-serine, and glibenclamide-threonine and the 1:1:1 molar combination glibenclamide-serine-threonine formed co-amorphous mixtures. These were homogeneous single-phase blends with weak intermolecular interactions in the mixtures. Interestingly, a favorable effect by the excipients on the tautomerism of amorphous glibenclamide in the co-amorphous blends was seen, as the formation of the thermodynamically less stable imidic acid tautomer of glibenclamide was suppressed compared to that of the pure amorphous drug. Furthermore, the co-amorphous mixtures provided a physical stability advantage over the amorphous drugs alone.


Assuntos
Aminoácidos/química , Excipientes/química , Glibureto/química , Sinvastatina/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Polímeros/química , Difração de Pó/métodos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
9.
Eur J Pharm Biopharm ; 202: 114396, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971201

RESUMO

Proteins have recently caught attention as potential excipients for amorphous solid dispersions (ASDs) to improve oral bioavailability of poorly water-soluble drugs. Notably, the studies have highlighted whey protein isolates, particularly ß-lactoglobulin (BLG), as promising candidates in amorphous stabilization, dissolution and solubility enhancement, achieving drug loadings of 50 wt% and higher. Consequently, investigations into the mechanisms underlying the solid-state stabilization of amorphous drugs and the enhancement of drug solubility in solution have been conducted. This graphical review provides a comprehensive overview of recent findings concerning BLG-based ASDs. Firstly, the dissolution performance of BLG-based ASDs is compared to more traditional polymer-based ASDs. Secondly, the drug loading onto BLG and the resulting amorphous stabilization mechanisms is summarized. Thirdly, interactions between BLG and drug molecules in solution are described as the mechanisms governing the improvement of drug solubility. Lastly, we outline the impact of the spray drying process on the secondary structure of BLG, and the resulting differences in amorphous stabilization and drug dissolution performance between α-helix-rich and ß-sheet-rich BLG-based ASDs.


Assuntos
Excipientes , Lactoglobulinas , Solubilidade , Lactoglobulinas/química , Excipientes/química , Disponibilidade Biológica , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Polímeros/química , Secagem por Atomização
10.
Int J Pharm ; 651: 123791, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38195031

RESUMO

Moisture was frequently used as dielectric heating source in classical microwave-able systems to facilitate microwave-induced in situ amorphization, however such systems may face the potential of drug hydrolysis. In this study, solid thermolytic salts were proposed to function as moisture substitutes and their feasibility and impacts on microwave-induced in situ amorphization were investigated. It was found that NH4HCO3 was a promising solid alkaline salt to facilitate both microwave-induced in situ amorphization and in situ salt formation of acidic indomethacin (IND). Moreover, it could improve the chemical stability of the drug and the dissolution performance of compacts relative to classical moisture-based compacts upon microwaving. Further mechanistic study suggested that the in situ amorphization occurred prior to the in situ salt formation, especially in formulations with low drug loadings and high solid salt mass ratios. For compacts with low polymer ratios, in situ salt formation took place subsequently, where the previously amorphized IND within compacts could interact with the NH3 gas produced in situ by the decomposition of NH4HCO3 and form the ammonium IND salt. Microwaving time showed great impacts on the decomposition of NH4HCO3 and the in situ generation of water and NH3, which indirectly affected the amorphization and salt formation of IND. In comparison to the moisture-based systems, the NH4HCO3-based system showed a number of advantages, including the reduced potential of IND hydrolysis due to the absence of absorbed moisture, a wider category of applicable polymeric carriers other than hygroscopic polymers, and an increase in drug loading up to 50% (w/w).


Assuntos
Micro-Ondas , Sais , Estabilidade de Medicamentos , Cristalização , Polímeros/química , Solubilidade
11.
Int J Pharm ; 630: 122426, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36427697

RESUMO

Microwave-induced in situ amorphization is a novel technology for preparing amorphous solid dispersions (ASDs) to address the challenges of their long-term physical stability and downstream processing. To date, only few types of dielectric materials have been reported for microwave-induced in situ amorphization, which restricted the extensive research of this technology. This study aimed to investigate the feasibility and mechanisms of utilizing the non-ionic surfactants, i.e. Kollisolv P124, Kolliphor RH40, D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), Tween (T) 60 (T60), T65, T80 and T85, as plasticizers to facilitate microwave-induced in situ amorphization. It was found that the successful application of surfactants could be related with their low Tm, low Mw and high HLB. Kolliphor RH40 was selected as a typical surfactant due to its excellent dielectric heating ability, plasticizing effect and solubilizing effect when facilitating amorphization. Then, the dissolution-mediated in situ amorphization mechanism was investigated and intuitively demonstrated. For the most promising formulation, i.e. microwaved systems with Korlliphor RH40 at 1.5 (w/w) plasticizer/polymer ratio, a complete and fast in vitro dissolution was observed relative to the untreated systems. In conclusion, non-ionic surfactants had the potential to facilitate microwave-induced in situ amorphization, which provided a new direction in the formulation designation for microwave-able systems.


Assuntos
Polímeros , Tensoativos , Micro-Ondas , Solubilidade , Polissorbatos , Plastificantes
12.
Int J Pharm ; 635: 122693, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36754186

RESUMO

Amorphous solid dispersions (ASD) have been considered as one of the most effective strategies to increase solubility and dissolution rate of poorly water-soluble drugs. Carriers, in which the poorly water-soluble drug is dispersed, contribute a large extent to the solid-state properties, stabilities and dissolution performance of ASDs. This study investigated the solid-state properties, physical stability, and in vitro dissolution behaviour of nimodipine ASDs formulated with a traditional polymeric carrier, i.e., polyvinylpyrrolidone (PVP) and a novel carrier, i.e., ß-lactoglobulin (BLG). The ASDs with both carriers were prepared using ball milling as preparative technique at 10 %, 17.5 %, 25 %, 30 % and 40 % drug loadings (DLs). All the formulations were found to be amorphous upon milling for 60 min based on X-ray powder diffraction measurements, however, the ASDs were found to be homogeneous unequivocally only at DLs below 25 %. After open storage at accelerated conditions (40 °C/75 % relative humidity), only the ASDs formulated with BLG at 10 % and 17.5 % DLs maintained the amorphous form. The dissolution study revealed that all the freshly prepared ASDs formulated with PVP and the ASDs formulated with BLG at or above 25 % DLs, showed a low drug release (<30 µg/mL in simulated gastric fluid, < 70 µg/mL in simulated intestinal fluid). Whilst the ASD formulated with BLG at 10 % DL exhibited a high drug release with a maximum concentration (Cmax) of 251 µg/mL in simulated gastric fluid and 231 µg/mL in simulated intestinal fluid. Surprisingly, the ASD formulated with BLG at 17.5 % DL demonstrated an even higher drug release (Cmax, 643 µg/mL in simulated gastric fluid, 332 µg/mL in simulated intestinal fluid), compared to the ASD of 10 % DL. These findings underline the importance of rationally investigating both carrier types and DL in the design of ASDs, in order to obtain a stable ASD with the desired enhanced dissolution rate of poorly water-soluble drugs.


Assuntos
Lactoglobulinas , Nimodipina , Solubilidade , Cristalização , Liberação Controlada de Fármacos , Povidona , Água , Composição de Medicamentos/métodos
13.
Int J Pharm ; 626: 122115, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985526

RESUMO

This study investigated the ability of in situ amorphisation using microwave irradiation in order to prepare highly supersaturated ASDs, i.e. ASDs with drug loads higher than the saturation solubility in the polymer at ambient temperature. For this purpose, compacts containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone (PVP), polyvinylpyrrolidone-vinyl acetate copolymer (PVP/VA), or polyvinyl acetate (PVAc), were prepared at drug loads between 30 and 90 % w/w. Sodium dihydrogen phosphate (NaH2PO4) monohydrate was included in all compacts, as a source of water, to facilitate the dielectric heating of the compacts upon dehydration during microwave irradiation. After processing, the samples were analysed towards their solid state using X-ray powder diffraction (XRPD) and modulated differential scanning calorimetry (mDSC). Complete amorphisation of CCX was achieved across all the investigated polymers and with a maximal drug load of 90, 80, and 50 % w/w in PVP, PVP/VA, and PVAc, respectively. These drug loads corresponded to a 2.3-, 2.4-, and 10.0-fold supersaturation in the investigated polymers at ambient temperature. However, dissolution experiments with the in situ prepared ASDs in fasted state simulated intestinal fluid (FaSSIF), showed a lower initial drug release (0-2 h) compared to equivalent physical mixtures of crystalline CCX and polymers or crystalline CCX alone. The lower drug release rate was explained by the fusion of individual drug and polymer particles during microwave irradiation and, subsequently, a lack of disintegration of the monolithic ASDs. Nevertheless, supersaturation of CCX in FaSSIF was achieved with the in situ amorphised ASDs with PVP and PVP/VA, albeit only after 3-24 h. Overall, the present study confirmed that it is feasible to prepare supersaturated ASDs in situ. However, in the current experimental setup, the monolithic nature of the resulting ASDs is considered a limiting factor in the practical applicability of this preparation method, due to limited disintegration and the associated negative effect on the drug release.


Assuntos
Micro-Ondas , Povidona , Celecoxib/química , Polímeros/química , Polivinil , Povidona/química , Solubilidade , Água
14.
Eur J Pharm Biopharm ; 180: 170-180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191869

RESUMO

In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation within the final dosage form by microwave irradiation. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time generally increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which negatively impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a both fully amorphous and disintegrating system.


Assuntos
Química Farmacêutica , Povidona , Humanos , Química Farmacêutica/métodos , Microtomografia por Raio-X , Comprimidos/química , Povidona/química , Excipientes/química , Celecoxib/química , Manitol/química , Sistemas de Liberação de Medicamentos , Solubilidade
15.
Eur J Pharm Sci ; 163: 105858, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887432

RESUMO

Amorphisation within the final dosage form, i.e. in situ amorphisation, seeks to circumvent the potential stability issues associated with poorly soluble drugs in amorphous solid dispersions (ASDs). Microwave irradiation has previously been shown to enable in situ preparation of ASDs, when a high amount of microwave absorbing water was introduced into the final dosage form by conditioning at high relative humidity. In this study, an alternative to this conditioning step was investigated by introducing crystal water in form of sodium dihydrogen phosphate (NaH2PO4) di-, and monohydrate, in compacts prepared with 30 % w/w celecoxib (CCX) in polyvinylpyrrolidone K12 (PVP). As controls, compacts prepared with NaH2PO4 anhydrate and without NaH2PO4 were included in the study. The quantification of amorphous CCX after microwave irradiation showed an increase in CCX amorphicity for compacts containing NaH2PO4 di-, and monohydrate with increasing irradiation time. Complete amorphisation of CCX in compacts containing NaH2PO4 di-, and monohydrate was observed after 6 min, while no appreciable amorphisation was observed for the control compacts containing NaH2PO4 anhydrate and without NaH2PO4. Modulated differential scanning calorimetric analysis revealed that a homogenous ASD was formed after 12 min and 6 min for compacts containing NaH2PO4 di-, and monohydrate, respectively. Thermal gravimetric analysis indicated that NaH2PO4 monohydrate showed higher dehydration rates compared to the dihydrate, which in turn resulted in higher compact temperatures, and overall increased the rate of amorphisation and reduced the microwave irradiation time necessary to achieve a homogenous ASD. The present results confirmed the suitability of NaH2PO4 di- and monohydrate as alternative sources of water, the primary microwave absorbing material, for in situ microwave amorphisation. The use of crystalline hydrates as water reservoirs for in situ amorphisation circumvents the time-consuming and highly impractical conditioning step previously reported in order to achieve complete amorphisation. Additionally, it allows for easier and more accurate adjustment of the compacts water content, which directly affects the temperature reached during microwave irradiation, and thus, the rate of amorphisation.


Assuntos
Micro-Ondas , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Cristalização , Povidona , Solubilidade
16.
J Pharm Sci ; 110(9): 3221-3229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022194

RESUMO

The use of a mixture of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) was investigated for microwave-induced in situ amorphization of celecoxib (CCX) inside compacts. Such amorphization requires the presence of a dipolar excipient in the formulation to ensure heating of the compact by absorption of the microwaves. Previously, the hygroscopic nature of PVP was exploited for this purpose. By exposing PVP-based compacts for set time intervals at defined relative humidity, controlled water sorption into the compacts was achieved. In the present study, PEG was proposed as the microwave absorbing excipient instead of water, to avoid the water sorption step. However, it was found that PEG alone melted upon exposure to microwave radiation and caused the compact to deform. Furthermore, CCX was found to recrystallize upon cooling in PEG-based formulations. Hence, a mixture of PEG and PVP was used, where the presence of PVP preserved the physical shape of the compact, and the physical state of the amorphous solid dispersion. To study the impact of the polymer mixture, different compact compositions of CCX, PEG and PVP were prepared. When exposing the compacts to microwave radiation, it was found that the PEG:PVP ratio was critical for in situ amorphization and that complete amorphization was only achieved above a certain temperature threshold.


Assuntos
Micro-Ondas , Povidona , Celecoxib , Excipientes , Polietilenoglicóis , Solubilidade
17.
Int J Pharm ; 609: 121157, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34626795

RESUMO

Microwave-induced in situ amorphization is an emerging technology to tackle the persistent stability issue of amorphous solid dispersions (ASDs) during manufacture and storage. The aim of this study was to introduce new effective polymeric carriers with diverse properties to microwave-induced in situ amorphization and to better understand their functions in relation to the final dissolution performance of microwaved tablets. Tablets composed of indomethacin (IND) and different polymers were compacted, stored at 75% relative humidity for at least 1 week and microwaved at 1000 W to induce amorphization. A series of polymers, polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios displaying varyingproperties in functional groupratio, hygroscopicity, molecular weight (Mw), and glass transition temperature (Tg) of the polymer were used as model carriers. The results suggested that more than 90% of IND was amorphized after 20 mins microwaving in all 20% (w/w) drug loaded tablets except for IND:PVAc tablets presenting approx. 36% residual crystallinity. Among them, tablets composed of PVP/VA I-335 and PVP K30 achieved complete in situ amorphization upon microwaving. Further analysis indicated that the influencing factors, polymer Mw and Tg of moisture-plasticized polymer, played a major role in microwave-induced in situ amorphization. In in vitro dissolution study, ASDs containing PVP/VA I-535 with moderate hydrophilicity and 0.96 ± 1.92% IND residual crystallinity showed the most rapid and complete drug release among all formulations, presenting the most promising dissolution performance. Further study on the chemical stability of such formulation showed a statistically insignificant decrease of drug content after pre-conditioning and microwaving (P = 0.288 > 0.05).


Assuntos
Micro-Ondas , Polímeros , Celecoxib , Estabilidade de Medicamentos , Indometacina , Povidona , Solubilidade
18.
Eur J Pharm Biopharm ; 149: 77-84, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32035238

RESUMO

In this study, the impact of drug and polymer particle size on the in situ amorphization using microwave irradiation at a frequency of 2.45 GHz were investigated. Using ball milling and sieve fractioning, the crystalline drug celecoxib (CCX) and the polymer polyvinylpyrrolidone (PVP) were divided into two particle size fractions, i.e. small (<71 µm) and large (>71 µm) particles. Subsequently, compacts containing a drug load of 30% (w/w) crystalline CCX in PVP were prepared and subjected to microwave radiation for an accumulated duration of 600 sec in intervals of 60 sec as well as continuously for 600 sec. It was found that the compacts containing small CCX particles displayed faster rates of amorphization and a higher degree of amorphization during microwave irradiation as compared to the compacts containing large CCX particles. For compacts with small CCX particles, interval exposure to microwave radiation resulted in a maximum degree of amorphization of 24%, whilst a fully amorphous solid dispersion (100%) was achieved after 600 sec of continuous exposure to microwave radiation. By monitoring the temperature in the core of the compacts during exposure to microwave radiation using a fiber optic temperature probe, it was found that the total exposure time above the glass transition temperature (Tg) was shorter for the interval exposure method compared to continuous exposure to microwave radiation. Therefore, it is proposed that the in situ formation of an amorphous solid dispersion is governed by the dissolution of drug into the polymer, which most likely is accelerated above the Tg of the compacts. Hence, prolonging the exposure time above the Tg, and increasing the surface area of the drug by particle size reduction will increase the dissolution rate and thus, rate and degree of amorphization of CCX during exposure to microwave radiation.


Assuntos
Celecoxib/química , Micro-Ondas , Polímeros/química , Povidona/química , Química Farmacêutica , Cristalização , Tamanho da Partícula , Temperatura , Fatores de Tempo , Vitrificação
19.
J Pharm Sci ; 107(1): 149-155, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28603020

RESUMO

The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus® (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi-based amorphous solid dispersions.


Assuntos
Carbazóis/química , Ibuprofeno/química , Propanolaminas/química , Dióxido de Silício/química , Solventes/química , Carvedilol , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Temperatura Alta , Polietilenoglicóis/química , Polímeros/química , Polivinil/química , Solubilidade/efeitos dos fármacos
20.
Eur J Pharm Sci ; 117: 62-67, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29428542

RESUMO

In this study, the influence of drug load on the microwave-induced amorphization of celecoxib (CCX) in polyvinylpyrrolidone (PVP) tablets was investigated using quantitative transmission Raman spectroscopy. A design of experiments (DoE) setup was applied for developing the quantitative model using two factors: drug load (10, 30, and 50% w/w) and amorphous fraction (0, 25, 50, 75 and 100%). The data was modeled using partial least-squares (PLS) regression and resulted in a robust model with a root mean-square error of prediction of 2.5%. The PLS model was used to study the amorphization kinetics of CCX-PVP tablets with different drug content (10, 20, 30, 40 and 50% w/w). For this purpose, transition Raman spectra were collected in 60 s intervals over a total microwave time of 10 min with an energy input of 1000 W. Using the quantitative model it was possible to measure the amorphous fraction of the tablets and follow the amorphization as a function of microwaving time. The relative amorphous fraction of CCX increased with increasing microwaving time and decreasing drug load, hence 90 ±â€¯7% of the drug was amorphized in the tablets with 10% drug load whereas only 31 ±â€¯7% of the drug was amorphized in the 50% CCX tablets. It is suggested that the degree of amorphization depends on drug loading. The likelihood of drug particles being in direct contact with the polymer PVP is a requirement for the dissolution of the drug into the polymer upon microwaving, and this is reduced with increasing drug load. This was further supported by polarized light microscopy that revealed evidence of crystalline particles and clusters in all the microwaved tablets.


Assuntos
Celecoxib/efeitos da radiação , Micro-Ondas , Celecoxib/química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/efeitos da radiação , Análise dos Mínimos Quadrados , Povidona/química , Povidona/efeitos da radiação , Análise Espectral Raman , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA