Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Brain Res Bull ; 75(2-4): 319-23, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18331892

RESUMO

Basic features of the anterior nerve cord in amphioxus larvae are summarized to highlight its essential similarity with the vertebrate brain. Except for a pineal homolog, the amphioxus brain consists of a much simplified version of the ventral brainstem, including a region probably homologous with the hypothalamus, and a locomotory control center roughly comparable to the vertebrate tegmentum and reticulospinal system. Amphioxus has direct pathways for activating its locomotory circuits in response to mechanical stimuli via epithelial sensory cells, but this response is evidently modulated by inputs from diverse sensory-type cells located in the putative hypothalamic homolog, and from the lamellar body, the pineal homolog. This implies that a basic function of the amphioxus brain is to switch between locomotory activities, of which there are several, and the principal non-locomotory one, namely feeding. A similar involvement in switching between behavioral modes may thus have been a core brain function in ancestral chordates. Currently, however, incomplete knowledge of the physiology and behavior of amphioxus limits how effectively it can be used as an evolutionary model. Eye evolution is briefly discussed to illustrate how a better understanding of living forms can inform the evolutionary debate. An account of recent data on dorsoventral inversion is also included, as this bears directly on the question of where the chordate brain originated in relation to other structures. It now appears likely that key components of the ancestral brain were originally located around the mouth. A secondary repositioning of the latter would therefore have been required before a unitary brain could be assembled and internalized. This association between the mouth and the evolving brain reinforces the idea of a fundamental early connection between core brain structures and the control of feeding activity.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/embriologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/embriologia , História Antiga
2.
Int J Biol Sci ; 2(3): 104-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16763669

RESUMO

The MHB (midbrain-hindbrain boundary) is a key organizing center in the vertebrate brain characterized by highly conserved patterns of gene expression. The evidence for an MHB homolog in protochordates is equivocal, the "neck" region immediately caudal to the sensory vesicle in ascidian larvae being the best accepted candidate. It is argued here that similarities in expression patterns between the MHB and the ascidian neck region are more likely due to the latter being the principal source of neurons in the adult brain, and hence where all the genes involved in patterning the latter will necessarily be expressed. The contrast with amphioxus is exemplified by pax2/5/8, expressed in the neck region in ascidian larvae, but more caudally, along much of the nerve cord in amphioxus. The zone of expression in each case corresponds with that part of the nerve cord ultimately responsible for innervating the adult body, which suggests the spatially restricted MHB-like expression pattern in ascidians is secondarily reduced from a condition more like that in amphioxus. Patterns resembling those of the vertebrate MHB are nevertheless found elsewhere among metazoans. This suggests that, irrespective of its modern function, the MHB marks the site of an organizing center of considerable antiquity. Any explanation for how such a center became incorporated into the chordate brain must take account of the dorsoventral inversion chordates have experienced relative to other metazoans. Especially relevant here is a concept developed by Claus Nielsen, in which the brain is derived from a neural center located behind the ancestral mouth. While this is somewhat counterintuitive, it accords well with emerging molecular data.


Assuntos
Encéfalo/embriologia , Cordados/embriologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Cordados/anatomia & histologia , Cordados/metabolismo , Modelos Biológicos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA