Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioprocess Biosyst Eng ; 43(11): 1999-2007, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32524279

RESUMO

Organosolv pretreatment with two ethanol concentrations (25% and 50%, v/v) was performed to improve enzymatic saccharification of poplar sawdust. It was found that lower ethanol concentration (25%, v/v) pretreatment resulted in a higher enzymatic digestibility of poplar (38.1%) due to its higher xylan removal and similar lignin removal ratios, compared to that pretreated with 50% (v/v) ethanol pretreatment (27.5%). However, the residual lignin still exhibited a strong inhibition on enzymatic hydrolysis of organosolv-pretreated poplar (OP). Bio-surfactant preparations including tea saponin (TS), TS crude extract, and tea seed waste were applied in enzymatic hydrolysis of OP, due to their potential ability of reducing enzyme non-productive binding on lignin. Their optimal loadings in enzymatic hydrolysis of OP were optimized, which indicated that adding 0.075 g/g glucan of TS improved the 72-h glucose yield of OP by 48.3%. Moreover, adding TS crude extract and tea seed waste exhibited the better performance than TS for improving enzymatic hydrolysis of OP. It was verified that the presence of protein in TS crude extract and tea seed waste accounted for the higher improvement. More importantly, the directly application of tea seed waste in enzymatic hydrolysis could achieve the similar improvement on enzymatic hydrolysis of OP, where chemosynthetic surfactant (PEG6000) was added. The residual enzyme activities in supernatant of enzymatic hydrolysis were also determined to reveal the changes on enzyme adsorption after adding surfactants. Generally, tea seed waste could be directly applied as an alternative to chemosynthetic surfactants to promote enzymatic hydrolysis of lignocelluloses.


Assuntos
Biotecnologia/métodos , Celulase/química , Glucose/química , Lignina/química , Saponinas/química , Solventes/química , Chá , Adsorção , Biomassa , Celulose/metabolismo , Etanol/metabolismo , Hidrólise , Resíduos Industriais , Tensoativos/química , Árvores , Água/química , Madeira
2.
Bioresour Technol ; 393: 130056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993070

RESUMO

In this study, a combined pretreatment involving autohydrolysis and p-toluenesulfonic acid (p-TsOH) was performed on poplar to coproduce xylooligosaccharides (XOSs) and monosaccharides. The autohydrolysis (180 °C, 30 min) yielded 53.2 % XOS and enhanced the delignification efficiency in the subsequent p-TsOH treatment. Furthermore, considerably high glucan contents (64.1 %∼83.1 %) were achieved in the combined pretreated substrates. However, their enzymatic digestibilities were found to be extremely poor (9.6 %∼14.2 %), which were even lower than the single p-TsOH pretreated substrates (10.2 %∼35.8 %). The underlying reasons were revealed by systematically investigating the effects of the single and combined pretreatment strategies on substrate properties. Moreover, the Tween 80 addition successfully reversed the adverse effects of combined pretreatment on the enzymatic hydrolysis, achieving a high glucose yield of 99.3 % at an enzyme loading of 10 filter paper units/g (FPU/g) glucan. These results deepen the understanding of the synergy of combined pretreatment on biomass fractionation and enzymatic saccharification.


Assuntos
Benzenossulfonatos , Lignina , Populus , Lignina/química , Polissorbatos , Hidrólise , Glucanos , Populus/química
3.
Int J Biol Macromol ; 264(Pt 1): 130633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447835

RESUMO

Efficiently addressing the challenge of leakage is crucial in the advancement of solid-liquid phase change thermal storage composite materials; however, numerous existing preparation methods often entail complexity and high energy consumption. Herein, a straightforward blending approach was adopted to fabricate stable phase change nanocomposites capitalizing on the interaction between TEMPO-oxidized cellulose nanofibers (TOCNF) and polyethylene glycol (PEG) molecules. By adjusting the ratio of TOCNF to PEG and the molecular weights of PEG, TOCNF/PEG phase change composites (TPCC) with customizable phase transition temperature (40.3-59.1 °C) and high phase transition latent heat (126.3-172.1 J/g) were obtained. The TPCC of high-loaded PEG (80-95 wt%) ensured a leakage rate of less than 1.7 wt% after 100 heating-cooling cycles. Moreover, TPCC exhibits excellent optical properties with a transmittance of over 90 % at room temperature and up to 96 % after heating. The thermal response analysis of TPCC demonstrates exceptional thermal-induced flexibility and good thermal stability, as well as recyclability and reshaping ability. This study may inspire others to design bio-based phase change composites with potential applications in thermal energy storage and management of smart-energy buildings, photothermal response devices, and waste heat-generating electronics.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Temperatura Alta , Temperatura , Polietilenoglicóis
4.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553197

RESUMO

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Assuntos
Nanopartículas , Nitritos , Selênio , Elementos de Transição , Antibacterianos/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Hidrogéis/farmacologia
5.
Int J Biol Macromol ; 253(Pt 1): 126486, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37633559

RESUMO

Anti-ultraviolet material with cost-effectiveness, environmental friendliness, and multifunction is urgently needed to address the serious problem of ultraviolet radiation. However, traditional anti-ultraviolet products based on plastics are unsustainable and harmful to the environment. Herein, the cellulose films with a sandwich structure using a surface assembly technique were reported. Natural L-phenylalanine was grafted onto cellulose nanofibrils via amidation to enhance their UV-shielding property. To address the hydrophilic nature and limited mechanical strength of cellulose films, we employed octadecyltrichlorosilane and 4ARM-PEG-NH2 for hydrophobic coating and mechanical reinforcement, respectively. In addition to providing complete UV resistance in the wavelength range of 200-320 nm, sample OPT5 exhibited significantly improved tensile stress, Young's modulus, and toughness, measuring 174.09 MPa, 71.11 MPa, and 295.33 MJ/m3, respectively. Furthermore, due to the presence of antibacterial amine groups, the modified film demonstrated a satisfactory inhibitory effect on the growth of Escherichia coli and Bacillus subtilis. Compared to natural cellulose films, the hydrophobically modified material achieved a contact angle of up to 121.1°, which enabled efficient separation of oil-water mixtures with a maximum separation efficiency of 93.87 %. In summary, the proposed TOCNF-based UV-shielding film with multifunctionality holds great potential for replacing petrochemical-derived plastics and serving as an applicable and sustainable membrane material.


Assuntos
Celulose Oxidada , Raios Ultravioleta , Nanopartículas em Multicamadas , Celulose/química , Água
6.
Bioresour Technol ; 370: 128510, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538959

RESUMO

To explore the interaction mechanism of pseudo-lignin (PL) with cellulase and its influence on cellulose hydrolysis, different PLs were extracted from pretreated bamboo holocellulose (HC) using different organic solvents. Meanwhile, the real-time interaction of PL and cellulase was analyzed using surface plasmon resonance (SPR). The results showed that the extraction effect of the tetrahydrofuran and 1, 4-dioxane/water solution on PL was more effective than the ethanol/water solution. The inhibition of PL fraction obtained from HC by acid pretreatment with higher temperature showed less effect on Avicel's enzymatic hydrolysis. SPR analysis revealed that PL formed at higher pretreatment temperature had a lower dissociation rate after adsorption with cellulase. Besides, the binding affinity of PL (160 °C) to cellulase was much greater than that of PL obtained from 180 °C, indicating PL extracted at higher temperature treated biomass is more easily dissociated from cellulase after binding.


Assuntos
Celulase , Celulases , Celulose/metabolismo , Lignina/metabolismo , Ressonância de Plasmônio de Superfície , Hidrólise , Água , Celulase/metabolismo
7.
Int J Biol Macromol ; 227: 462-471, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521712

RESUMO

Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels. Self-assembly of cellulose to fabricate a cellulose skeleton is essential for realizing a skin-mimicking design. Furthermore, two methods, in situ polymerization and solvent replacement, were compared and investigated to incorporate conductive and anti-freezing components into hydrogels. Consequently, when the same ratio of glycerol and lithium chloride was used, the anti-freezing hydrogels prepared by in situ polymerization showed relatively higher strength (1.0 MPa), while the solvent-replaced hydrogels exhibited higher elastic recovery properties (94.6 %) and conductivity (4.5 S/m). In addition, their potential as strain sensors for monitoring human behavior was analyzed. Both hydrogels produced reliable signals and exhibited high sensitivity. This study provides a new horizon for the fabrication of strain sensors that can be applied in various environments.


Assuntos
Celulose , Hidrogéis , Humanos , Elasticidade , Glicerol , Condutividade Elétrica , Solventes
8.
Appl Biochem Biotechnol ; 194(7): 3016-3030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35334068

RESUMO

Enzymatic hydrolysis using ß-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing ß-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing ß-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by ß-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.


Assuntos
Sesbania , beta-Manosidase , Carbono , Celulose/metabolismo , Fermentação , Galactose/análogos & derivados , Hidrólise , Mananas/metabolismo , Melibiose , Peso Molecular , Sementes/metabolismo , Tecnologia , alfa-Galactosidase , beta-Manosidase/metabolismo
9.
Bioresour Technol ; 364: 128059, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191752

RESUMO

The adsorbed ash and lignin contained in waste wheat straw (WWS) have been the essential factors restricting its high-value utilization in biorefinery. Hence, humic acid (HA) and FeCl3 as the additives of hydrothermal pretreatment were applied to simultaneously enhance the removal of lignin and eliminate the acid buffering of ash in WWS, respectively. The results showed that the xylan and lignin removal of WWS pretreated with 10 g/L HA and 20 mM FeCl3 could be efficiently increased from 61.4% to 72.9% and from 14.7% to 38.7%, respectively. The enzymatic hydrolysis efficiency and ethanol yield of WWS were increased this way from 44.4% to 82.7% and from 20.55% to 36.86%, respectively. According to the characterization of WWS, the synergistic interaction between HA and FeCl3 was beneficial to the cellulose accessibility and surface lignin area of WWS changed in positive directions, leading to the improvement of hydrolysis efficiency.


Assuntos
Lignina , Triticum , Fermentação , Substâncias Húmicas , Hidrólise
10.
Bioresour Technol ; 355: 127255, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526719

RESUMO

A better understanding of the relationship between lignin structures and their inhibitory effects in enzymatic saccharification would facilitate the development of lignocellulose biorefinery process. However, the heterogeneity of lignins challenges the elucidation of lignin structure-inhibition correlation. In this study, two types of lignin fractions including ethanol soluble lignins and ethanol insoluble lignins were respectively isolated from the poplars pretreated with various severities. The impacts of pretreatment severities on the structural changes of lignin fractions were studied from the perspective of inter-units linkages, condensed aromatic substructure, and hydroxyl groups. Furthermore, it was observed that lignin addition strongly inhibited the enzymatic saccharification of pure cellulose by 13.3 âˆ¼ 56.3%. Lignin inhibition extents were increased with the elevated pretreatment severity. The relationships between the lignin structural features and lignin inhibition were analyzed, which revealed that the contents of condensed aromatic units and phenolic hydroxyl were crucial factors determining the lignin inhibition.


Assuntos
Lignina , Populus , Celulose/química , Etanol , Hidrólise , Lignina/química
11.
Bioresour Technol ; 351: 127042, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318146

RESUMO

To elucidate the structure-activity relationship between lignin and various cellulase domains, four lignin fractions with specific structures and molecular weight were prepared from bamboo kraft lignin (BKL) and used to investigate the adsorption mechanism between different cellulase domains by fluorescence spectroscopy and SDS-PAGE. Endo-cellulase 6B exhibited a higher affinity to BKL fractions than the carbohydrate-binding module (CBM4A) of cellulase, which is positively correlated to molecular weight. The thermodynamic mechanism showed that the adsorption between BKL fractions and endo-cellulase 6B was dominated by van der Waals and electrostatic forces, while hydrophobic force is the driver for BKL fractions to adsorb CBM4A. Structure-activity relationship between lignin fractions and cellulase domain revealed that thermodynamics and interaction forces were more easily affected by the structure of BKL, including S/G ratio, molecular weight and hydrophobicity. The aforementioned results demonstrated that lignin's structure plays a critical role in its adsorption with various cellulase domains.


Assuntos
Celulase , Adsorção , Celulase/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lignina/química
12.
Int J Biol Macromol ; 204: 41-49, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122797

RESUMO

In the present work, cellulose nanocrystals (CNCs) composite films with suitable applicable capabilities were prepared by facilely incorporating glycerol (Gly) and poly(benzyl acrylate) (PBA). Chemical and morphological variations during the fabrication of the films were systematically characterized. The properties of modified CNCs composite films including UV blocking ability, mechanical strength and thermal properties were characterized to assess their applicable potentials. As a result, the composite films have good UV shielding property in UVC (220-280 nm) region and UVB (280-320 nm) region. The shielding performance of the modified film in the ultraviolet absorption region reached 92.77% to 95.49% respectively, without damaging the original chiral nematic structure of the films. Along with the modification, BACNC film improved the mechanical properties, presenting the tensile strength 16 times higher compared to pure CNCs film. The nanocomposite films proposed in this work showed promising potentials in broad fields, such as food preservation, medical protection, and surface coating applications.


Assuntos
Nanocompostos , Nanopartículas , Acrilatos , Celulose/química , Glicerol , Nanocompostos/química , Nanopartículas/química
13.
Bioresour Technol ; 344(Pt B): 126315, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775053

RESUMO

Acid pretreatment was insufficient to disrupt the recalcitrance derived from lignins in softwood, thus a lignin-targeting post-treatment was required. In this study, a combined acid and alkali pretreatment with polyethylene glycol-epoxides (PEG-epoxides) was developed on masson pine. Results showed although the combined pretreatment achieved a limited delignification, but a remarkably increment of 15.9-34.9% on hydrolysis yields was achieved. This was ascribed to the successful incorporation of hydrophilic PEG chains to residual lignins. Moreover, the improvement on enzymatic digestibility varied with the PEG chain lengths in modifiers. The underlying reasons for this improvement were primarily investigated by monitoring the lignin properties as well as water retention values variation after in-situ lignin modification by PEG-epoxides with varied molecular weights. It indicated that the enzymatic hydrolysis improvement was mainly due to both reduced enzyme nonspecific adsorption and increased fiber swelling. Results will give new insights to resolve the challenge on softwood biorefinery.


Assuntos
Celulase , Pinus , Compostos de Epóxi , Hidrólise , Lignina , Polietilenoglicóis
14.
Biotechnol Adv ; 54: 107830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34480987

RESUMO

Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.


Assuntos
Celulase , Lignina , Biomassa , Carboidratos , Celulase/química , Celulose/química , Hidrólise , Lignina/química
15.
Bioresour Technol ; 362: 127825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031133

RESUMO

In this study, lignin blockers including non-catalytic protein and surfactants were employed to promote enzymatic digestibility of pretreated poplars. Among them, Tween 80 exhibited the most pronounced facilitation, improving the glucose yield from 26.6% to 99.6% at a low enzyme loading (10 FPU/g glucan), and readily reduced the required cellulase loading by 75%. The underlying mechanism for this remarkable improvement on glucose yields by Tween 80 was elucidated. The impacts of Tween 80 on the enzyme-lignin interaction were explored by quartz crystal microbalance analysis, revealing that the binding rate of Tween 80 on lignin surfaces was 3-fold higher than that of enzyme. More importantly, Tween 80 remarkably decreased the binding capacity and binding rate of enzyme on lignins. Furthermore, the substrate properties dominating the increase in glucose yields with Tween 80 were explored. The results facilitate to understand the underlying mechanism of the promotion of surfactants on enzymatic hydrolysis.


Assuntos
Celulase , Lignina , Celulase/metabolismo , Solventes Eutéticos Profundos , Glucose , Hidrólise , Lignina/química , Polissorbatos , Solventes , Tensoativos/química
16.
Int J Biol Macromol ; 223(Pt B): 1633-1640, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36270399

RESUMO

Light pollution from ultraviolet (UV) radiation is gaining growing concerns, as the emissions and burning of fossil fuels destroyed the ozone layer. Seeking a solution against skin exposure to excessive radiation is an urgent requirement. In this study, nicotinamide (NA), the main component of vitamin B3, was introduced as a new modifier into Tempo-oxidized cellulose nanofibrils (TOCNFs) together with the physical cross-linking with tannin acid (TA) to improve anti-UV performance of the nanocomposite films. Incorporation of NA into the films presents distinguished UV shielding capability UVB wavelength range from 200 nm to 320 nm (NTA1-5) due to the introduced functional groups like CO and benzene rings. Moreover, mechanical properties were notably enhanced, which overcome the low strength of common nanocellulosic materials. The stress increased from 69.8 MPa to 116.3 MPa, and the toughness can reach 131.58 MJ/m3 by tuning the additional amount of NA. Meanwhile, TGA and DTG analysis demonstrated that the incorporation of amide bonds and TA into the composite films greatly improved the thermal stability. Thus, the proposed materials fabricated from natural biomolecules show great potential in serving as new kinds of UV-resistant products in the application areas of sunscreen, protective clothing, and building materials.


Assuntos
Celulose Oxidada , Nanocompostos , Celulose Oxidada/química , Celulose/química , Niacinamida , Nanocompostos/química , Protetores Solares
17.
Carbohydr Polym ; 294: 119760, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868784

RESUMO

With the development of wearable devices, the fabrication of strong, tough, antibacterial, and conductive hydrogels for sensor applications is necessary but remains challenging. Here, a skin-inspired biomimetic strategy integrated with in-situ reduction has been proposed. The self-assembly of cellulose to generate a cellulose skeleton was essential to realize the biomimetic structural design. Furthermore, in-situ generation of silver nanoparticles on the skeleton was easily achieved by a heating process. This process not only offered the excellent antibacterial property to hydrogels, but also improved the mechanical properties of hydrogels due to the elimination of negative effect of silver nanoparticles aggregation. The highest tensile strength and toughness could reach 2.0 MPa and 11.95 MJ/m3, respectively. Moreover, a high detection range (up to 1300%) and sensitivity (gauge factor = 4.4) was observed as the strain sensors. This study provides a new horizon to fabricate strong, tough and functional hydrogels for various applications in the future.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Antibacterianos/farmacologia , Biomimética , Celulose , Condutividade Elétrica , Hidrogéis/química , Prata
18.
Bioresour Technol ; 360: 127524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764283

RESUMO

To improve the enzymatic digestibility of dilute acid pretreated bamboo residue (DABR), surfactants including PEG 4000 and Tween 80 were added to prevent the non-productive adsorption between residual lignin and enzyme. At the optimal loadings (e.g., 0.2 and 0.3 g surfactant/g lignin), the enzymatic digestibility of DABR improved from 29.4% to 64.6% and 61.6% for PEG 4000 and Tween 80, respectively. Furthermore, the promoting mechanism of these surfactants on enzymatic hydrolysis was investigated by real-time surface plasmon resonance (SPR) and fluorescence spectroscopy. Results from SPR analysis showed that Tween 80 outperformed PEG 4000 in terms of dissociating the irreversible cellulase adsorption onto lignin. Fluorescence quenching mechanism revealed that PEG 4000 and Tween 80 intervened the interaction between lignin and cellulase by hydrogen bonds/Van der Waals and hydrophobic action, respectively. This work provided an in-depth understanding of the mechanisms of PEG 4000 and Tween 80 on enhancing the enzymatic hydrolysis efficiency.


Assuntos
Celulase , Lignina , Celulase/química , Hidrólise , Lignina/química , Polissorbatos , Tensoativos/química
19.
Bioresour Technol ; 321: 124471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33296773

RESUMO

A promising pretreatment mediated by biomass-derived deep eutectic solvent (DES) with choline chloride to lactic acid was implemented to overcome the recalcitrant structure of poplar sawdust for effective enzymatic hydrolysis and valorized lignin. Results showed the DES applied was strongly selective towards removal of lignin and xylan while preserving cellulose. Under the optimal pretreatment condition (DES ratio: 1:2, temperature: 130 °C, time:1.5 h), the glucose yield from enzymatic hydrolysis was 75.8%. Chemical and structure changes of recovered lignin were evaluated to gauge its valorization potential. It indicated that the recovered lignin possessed molecular weight (4000-6000 g/mol), low polydispersity (PDI < 2.0), low quantity of ß-aryl-ethers with no recondensation, and an abundance of phenolic OH groups. The excellent antioxidant capacity of lignin demonstrated its great value as a polyphenolic antioxidant. Overall, this work demonstrated an emerging biorefinery technology method for effective fractionation and valorization of lignocellulosic biomass.


Assuntos
Antioxidantes , Lignina , Biomassa , Hidrólise , Solventes , Açúcares
20.
Bioresour Technol ; 324: 124651, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33422692

RESUMO

Traditional surfactants have been reported to enhance enzymatic saccharification of lignocellulose, however, it is important to transfer these findings to a system that uses a high-efficiency and low-toxicity natural surfactant instead. In this work, a novel hybrid method involving use of the natural surfactant (humic acid, HA) during mild acid (H2SO4) pretreatment was developed for waste wheat straw (WWS) biorefinery. The HA was found to help remove lignin up to 40.6%, and hemicellulose up to 96.2%. As a result of these changes, the enzymatic hydrolysis efficiency reached as high as 92.9%. The success of enzymatic digestion was partly attributed to the improved accessibility of cellulose to cellulase and changes in lignocellulose structures. We anticipate that these findings will be used to further evaluate HA as a beneficial surfactant in biorefinery pretreatment processes, and perhaps spur others to identify other natural surfactants that may prove even more effective.


Assuntos
Celulase , Triticum , Hidrólise , Lignina , Ácidos Sulfúricos , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA