Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428629

RESUMO

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Poliestirenos , Microplásticos , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Nanopartículas/química
2.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506359

RESUMO

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Assuntos
Microplásticos , Plásticos , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Esgotos/química , Cloreto de Metileno/análise , Solubilidade , Solo/química , Digestão
3.
Anal Chem ; 94(2): 740-747, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34974702

RESUMO

The global pollution of micro- and nano-plastics (MNPs) calls for monitoring methods. As diverse mixtures of various sizes, morphologies, and chemical compositions in the environment, MNPs are currently quantified based on mass or number concentrations. Here, we show total organic carbon (TOC) as an index for quantifying the pollution of total MNPs in environmental waters. Two parallel water samples are respectively filtered with a carbon-free glass fiber membrane. Then, one membrane with the collected particulate substances is treated by potassium peroxodisulfate oxidation and Fenton digestion in sequence for quantifying the sum of MNPs and particulate black carbon (PBC) as TOCMNP&PBC using a TOC analyzer, another membrane is treated by sulfonation and Fenton digestion for quantifying PBC as TOCPBC, and the TOC of MNPs is calculated by subtracting TOCPBC from TOCMNP&PBC. The feasibility of our method is demonstrated by determination of various MNPs of representative plastic types and sizes (0.5-100 µm) in tap, river, and sea water samples, with low detection limits (∼7 µg C L-1) and high spiked recoveries (83.7-114%). TOC is a powerful index for routine monitoring of MNP pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Carbono , Monitoramento Ambiental , Poluição Ambiental , Microplásticos , Rios , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 56(12): 8255-8265, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652387

RESUMO

Although nanoplastics (NPs) are recognized as emerging anthropogenic particulate pollutants, the occurrence of NPs in the environment is rarely reported, partly due to the lack of sensitive methods for the concentration and detection of NPs. Herein, we present an efficient method for enriching NPs of different compositions and various sizes. Alkylated ferroferric oxide (Fe3O4) particles were prepared as adsorbents for highly efficient capture of NPs in environmental waters, and the formed large Fe3O4-NP agglomerates were separated by membrane filtration. Detection limits of 0.02-0.03 µg/L were obtained for polystyrene (PS) and poly(methyl methacrylate) (PMMA) NPs by detection with pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). When analyzing real water samples from different sources, it is remarkable that PS NPs were detected in 11 out of 15 samples with concentrations ranging from <0.07 to 0.73 µg/L, while PMMA were not detected. The wide detection of PS NPs in our study confirms the previous speculation that NPs may be ubiquitous in the environmental waters. The accurate quantification of PS NPs in environmental waters make it possible to monitor the pollution status of NPs in aquatic systems and evaluate their potential risks.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas/química , Óxidos , Polimetil Metacrilato/análise , Poliestirenos , Pirólise , Poluentes Químicos da Água/química
5.
Environ Sci Technol ; 56(24): 17694-17701, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480640

RESUMO

Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Microplásticos , Polímeros , Água do Mar/química , Poliestirenos , Poluentes Químicos da Água/análise
6.
Anal Chem ; 93(32): 11184-11190, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347439

RESUMO

Determination of particulate black carbon (PBC) in the environment is of great importance but faces a new challenge due to the increasing occurrence of coexisting microplastics (MPs), which are an emerging contaminant with properties very similar to those of PBC and cannot be discriminated in the chemical digestion procedure of the reported PBC analysis method. Herein, a comprehensive method has been developed for accurately determining PBC by digestive elimination of the coexisting MPs and other non-black carbon organic matter. Water samples were filtered with a glass fiber membrane (0.3 µm pore size), and the collected substances with the membrane were subjected to sulfonation with chlorosulfonic acid and Fenton digestion in sequence and then to the total organic carbon analyzer for quantification of PBC. Under the optimized conditions, MPs of various sizes and polymer types were efficiently eliminated (>91.0%), whereas various PBC samples were undigested with recoveries over 91.7% except for the relatively low recovery of 65.6% for the PBC prepared at a low pyrolysis temperature of 400 °C. The feasibility of the proposed method was verified by analysis of real water samples with a spike recovery of 88.6-100.2%. We anticipate that this work will pave an avenue for reliable determination of PBC in the presence of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Carbono , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise
7.
Anal Chem ; 93(10): 4559-4566, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33646744

RESUMO

Respective detection of microplastics (MPs) and nanoplastics (NPs) is of great importance for their different environmental behaviors and toxicities. Using spherical polystyrene (PS) and poly(methyl methacrylate) (PMMA) plastics as models, the efficiency for sequential isolation of MPs and NPs by membrane filtration and cloud-point extraction was evaluated. After filtering through a glass membrane (1 µm pore size), over 90.7% of MPs were trapped on the membrane, whereas above 93.0% of NPs remained in the filtrate. The collected MPs together with the glass membrane were frozen in liquid nitrogen, ground, and suspended in water (1 mL) and subjected to pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) determination. The NPs in the filtrate were concentrated by cloud-point extraction, heated at 190 °C to degrade the extractant, and then determined by Py-GC/MS. For MPs and NPs spiked in pure water, the method detection limits are in the range of 0.05-1.9 µg/L. The proposed method is applied to analyze four real water samples, with the detection of 1.6-7.6 µg/L PS MPs and 0.6 µg/L PMMA MPs in three samples, and spiked recoveries of 75.0-102% for MPs and 67.8-87.2% for NPs. Our method offers a novel sample pretreatment approach for the respective determination of MPs and NPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poliestirenos/análise , Pirólise , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 55(8): 4783-4791, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752329

RESUMO

The globally raising concern for nanoplastics (NPs) pollution calls for analytical methods for investigating their occurrence, fates, and effects. Counting NPs with sizes down to 50 nm in real environmental waters remains a great challenge. Herein, we developed a full method from sample pretreatment to quantitative detection for NPs in environmental waters. Various NPs of common plastic types and sizes (50-1200 nm) were successfully labeled by in situ growth of gold nanoparticles and counted by single particle inductively coupled plasma mass spectrometry. Sucrose density gradient centrifugation enables the isolation of gold-labeled NPs from homogeneously nucleated Au nanoparticles, enhancing the particle number detection limit to 4.6 × 108 NPs/L for 269 nm spherical polystyrene NPs. For real environmental water samples, the pretreatment of acid digestion with a mixture of 5 mM HNO3 and 40 mM HF eliminates the coexisting inorganic nanoparticles, while the following dual cloud-point extraction efficiently isolates NPs from various matrices and thus improves the Au-labeling efficiency. The high spiked recoveries (72.9%-92.8%) of NPs in different waters demonstrated the applicability of this method in different scenarios.


Assuntos
Ouro , Nanopartículas Metálicas , Espectrometria de Massas , Microplásticos , Tamanho da Partícula , Plasma
9.
Environ Sci Technol ; 51(23): 13816-13824, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29121473

RESUMO

Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag+, aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 µg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.


Assuntos
Nanopartículas Metálicas , Polivinil , Poluentes Químicos da Água , Prata , Extração em Fase Sólida
10.
STAR Protoc ; 5(2): 103104, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861383

RESUMO

Approaches for detecting micro(nano)plastics (MNPs) released from intravenous infusion products (IVIPs) are vital for evaluating the safety of both IVIPs and their derived MNPs on human health, yet current understanding is limited. Here, we present a protocol for detecting polyvinyl chloride (PVC) MNPs by combining Raman spectroscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We describe steps for collecting, pretreating, and measuring PVC MNPs released from IVIPs. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Infusões Intravenosas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cloreto de Polivinila/química , Humanos , Microscopia Eletrônica de Varredura/métodos , Espectrometria por Raios X/métodos , Plásticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA