Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 204(9): e0011222, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35975994

RESUMO

Saccharibacteria Nanosynbacter lyticus strain TM7x is a member of the broadly distributed candidate phylum radiation. These bacteria have ultrasmall cell sizes, have reduced genomes, and live as epibionts on the surfaces of other bacteria. The mechanisms by which they establish and maintain this relationship are not yet fully understood. The transcriptomes of the epibiont TM7x and its host bacteria Schaalia odontolytica strain XH001 were captured across the establishment of symbiosis during both the initial interaction and stable symbiosis. The results showed a dynamic interaction with large shifts in gene expression for both species between the initial encounter and stable symbiosis, notably in transporter genes. During stable symbiosis, the host XH001 showed higher gene expression for peptidoglycan biosynthesis, mannosylation, cell cycle and stress-related genes, whereas it showed lower expression of chromosomal partitioning genes. This was consistent with the elongated cell shape seen in XH001 infected with TM7x and our discovery that infection resulted in thickened cell walls. Within TM7x, increased pili, type IV effector genes, and arginine catabolism/biosynthesis gene expression during stable symbiosis implied a key role for these functions in the interaction. Consistent with its survival and persistence in the human microbiome as an obligate epibiont with reduced de novo biosynthetic capacities, TM7x also showed higher levels of energy production and peptidoglycan biosynthesis, but lower expression of stress-related genes, during stable symbiosis. These results imply that TM7x and its host bacteria keep a delicate balance in order to sustain an episymbiotic lifestyle. IMPORTANCE Nanosynbacter lyticus type strain TM7x is the first cultivated member of the Saccharibacteria and the candidate phyla radiation (CPR). It was discovered to be ultrasmall in cell size with a highly reduced genome that establishes an obligate epibiotic relationship with its host bacterium. The CPR is a large, monophyletic radiation of bacteria with reduced genomes that includes Saccharibacteria. The vast majority of the CPR have yet to be cultivated, and our insights into these unique organisms to date have been derived from only a few Saccharibacteria species. Being obligate parasites, it is unknown how these ultrasmall Saccharibacteria, which are missing many de novo biosynthetic pathways, are maintained at a high prevalence within the human microbiome as well as in the environment.


Assuntos
Simbiose , Transcriptoma , Arginina/metabolismo , Bactérias/genética , Genoma Bacteriano , Humanos , Peptidoglicano/metabolismo
2.
mSystems ; 7(2): e0148821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343799

RESUMO

Saccharibacteria (TM7), which are obligate episymbionts growing on the surface of host bacteria, may play an important role in oral disease, such as periodontitis (1, 2). As TM7 is a newly cultured lineage of bacteria, its research is limited by the small number of isolated representatives relative to the number of TM7 genomes assembled from culture-independent studies (3-5). A comprehensive view of both TM7 taxa and TM7 strain-level variations remains opaque. In this study, we expanded our previously developed TM7 baiting method into using many host bacteria in parallel, which allowed us to obtain 37 TM7 strains from the human oral cavity. These strains were further classified into low-enrichment (LE, n = 24) and high-enrichment (HE, n = 13) groups based on their proficiency at propagating on host bacteria. Of the 13 HE strains, 10 belong to "Candidatus Nanosynbacter sp." strain HMT-352 (human microbial taxon) (6), enabling us to explore both the phenotypic and genomic strain variations within a single TM7 species. We show that TM7 HMT-352 strains exhibit a diverse host range and varied growth dynamics during the establishment of their episymbiotic relationship with host bacteria. Furthermore, despite HMT-352 strains sharing a majority of their genes, we identified several gene clusters that may play a pivotal role in host affinity. More importantly, our comparative analyses also provide TM7 gene candidates associated with strain-level phenotypic variation that may be important for episymbiotic interactions with host bacteria. IMPORTANCE Candidate phylum radiation (CPR) bacteria comprise a poorly understood phylum that is estimated to encompass ∼26% of all diversity of domain bacteria. Among CPR bacteria, the Saccharibacteria lineage (TM7) is of particular interest, as it is found in high abundance in the mammal microbiome and has been associated with oral disease. While many CPR genomes, TM7 included, have been acquired through culture-independent methods, only a small number of representatives have been isolated. Such isolated representatives, however, shed light on the physiology, pathogenesis, and episymbiotic interactions of TM7. Combined with genomic analyses, experiments involving isolated representatives can distinguish phylogenetic to phenotypic discrepancies and better identify genes of importance. In this study, we utilized multiple host bacteria in parallel to isolate TM7 bacteria and examined strain-level variation in TM7 to reveal key genes that may drive TM7-host interactions. Our findings accentuate that broad phylogenetic characterization of CPR is the next step in understanding these bacteria.


Assuntos
Microbiota , Periodontite , Animais , Humanos , Filogenia , Bactérias , Mamíferos
3.
Mol Oral Microbiol ; 36(1): 37-49, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174294

RESUMO

Developing a laboratory model of oral polymicrobial communities is essential for in vitro studies of the transition from healthy to diseased oral plaque. SHI medium is an enriched growth medium capable of supporting in vitro biofilms with similar diversity to healthy supragingival inocula; however, this medium does not maintain the diversity of gram-negative bacteria more associated with subgingival plaque. Here, we systematically modified SHI medium components to investigate the impacts of varying nutrients and develop a medium capable of supporting a specific disease-state subgingival community. A diseased subgingival plaque sample was inoculated in SHI medium with increasing concentrations of sucrose (0%, 0.1%, 0.5%), fetal bovine serum (FBS) (0%, 10%, 20%, 30%, 50%), and mucin (0.1, 2.5, 8.0 g/L) and grown for 48 hrs, then the 16S rRNA profiles of the resulting biofilms were examined. In total, these conditions were able to capture 89 of the 119 species and 43 of the 51 genera found in the subgingival inoculum. Interestingly, biofilms grown in high sucrose media, although dominated by acidogenic Firmicutes with a low final pH, contained several uncultured taxa from the genus Treponema, information that may aid culturing these periodontitis-associated fastidious organisms. Biofilms grown in a modified medium (here named subSHI-v1 medium) with 0.1% sucrose and 10% FBS had a high diversity closest to the inoculum and maintained greater proportions of many gram-negative species of interest from the subgingival periodontal pocket (including members of the genera Prevotella and Treponema, and the Candidate Phyla Radiation phylum Saccharibacteria), and therefore best represented the disease community.


Assuntos
Placa Dentária , Periodontite , Biofilmes , Humanos , Bolsa Periodontal , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA