Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180366

RESUMO

New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the ß-ether linkage. Previous studies have shown that bacterial ß-etherase pathway enzymes catalyze glutathione-dependent cleavage of ß-ether bonds in dimeric ß-ether lignin model compounds. To date, however, it remains unclear whether the known ß-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze ß-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD+ and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin.IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The ß-etherase pathway present in sphingomonad bacteria could cleave the abundant ß-O-4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of ß-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD+) in vitro, and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial ß-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin.


Assuntos
Flavonoides/isolamento & purificação , Lignina/metabolismo , Polimerização , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Catálise , Lignina/isolamento & purificação , Oxirredutases/metabolismo , Sphingobacterium/metabolismo , Especificidade por Substrato
2.
Plant Physiol ; 173(2): 998-1016, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940492

RESUMO

Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in ß-ß and ß-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.


Assuntos
Aciltransferases/genética , Flavonoides/metabolismo , Inativação Gênica , Lignina/metabolismo , Zea mays/enzimologia , Zea mays/genética , Aciltransferases/metabolismo , Biomassa , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Mutação/genética , Fenóis/metabolismo , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Zea mays/crescimento & desenvolvimento
3.
Plant J ; 88(6): 1046-1057, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27553717

RESUMO

Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'-O-ß)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog was synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Filogenia , Cromatografia Líquida , Espectrometria de Massas , Poaceae/classificação , Poaceae/metabolismo
4.
Plant Physiol ; 171(2): 810-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208246

RESUMO

Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots.


Assuntos
Flavonas/metabolismo , Flavonoides/metabolismo , Lignina/metabolismo , Zea mays/metabolismo , Acilação , Vias Biossintéticas , Parede Celular/química , Parede Celular/metabolismo , Flavonas/química , Flavonoides/química , Lignina/química , Polímeros/química , Polímeros/metabolismo , Zea mays/química
5.
Plant Physiol ; 167(4): 1284-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667313

RESUMO

Tricin was recently discovered in lignin preparations from wheat (Triticum aestivum) straw and subsequently in all monocot samples examined. To provide proof that tricin is involved in lignification and establish the mechanism by which it incorporates into the lignin polymer, the 4'-O-ß-coupling products of tricin with the monolignols (p-coumaryl, coniferyl, and sinapyl alcohols) were synthesized along with the trimer that would result from its 4'-O-ß-coupling with sinapyl alcohol and then coniferyl alcohol. Tricin was also found to cross couple with monolignols to form tricin-(4'-O-ß)-linked dimers in biomimetic oxidations using peroxidase/hydrogen peroxide or silver (I) oxide. Nuclear magnetic resonance characterization of gel permeation chromatography-fractionated acetylated maize (Zea mays) lignin revealed that the tricin moieties are found in even the highest molecular weight fractions, ether linked to lignin units, demonstrating that tricin is indeed incorporated into the lignin polymer. These findings suggest that tricin is fully compatible with lignification reactions, is an authentic lignin monomer, and, because it can only start a lignin chain, functions as a nucleation site for lignification in monocots. This initiation role helps resolve a long-standing dilemma that monocot lignin chains do not appear to be initiated by monolignol homodehydrodimerization as they are in dicots that have similar syringyl-guaiacyl compositions. The term flavonolignin is recommended for the racemic oligomers and polymers of monolignols that start from tricin (or incorporate other flavonoids) in the cell wall, in analogy with the existing term flavonolignan that is used for the low-molecular mass compounds composed of flavonoid and lignan moieties.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Triticum/química , Zea mays/química , Acetilação , Vias Biossintéticas , Parede Celular/metabolismo , Flavonoides/síntese química , Flavonoides/química , Lignina/química , Espectroscopia de Ressonância Magnética , Peso Molecular , Fenóis/química , Fenóis/metabolismo , Polímeros/metabolismo , Triticum/metabolismo , Zea mays/metabolismo
6.
Carbohydr Polym ; 310: 120713, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925260

RESUMO

Carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) hydrogels loaded with soybean peptide (SPE) were fabricated via a freeze-thaw method. These hydrogels conquer barriers in simulated gastric fluid (SGF), and then release SPE in simulated intestinal fluid (SIF). The results of in vitro SPE release from these hydrogels showed that in SGF only a little of the SPE released, but in SIF the SPE was completely released. The released SPE had scavenging rates for DPPH and ABTS free radicals of 41.68 and 31.43 %. The pharmacokinetic model of SPE release from the hydrogels in SIF was studied. When the hydrogels are moved from SGF to SIF, the sorption of the shrinkage hydrogel network is entirely controlled by stress-induced relaxations. There are swollen and shrunken regions during SPE release. For SPE release into the SIF, SPE has to be freed from the weak bonds in the swollen regions by changes in the conformation of CMC and PVA. The release rate of SPE was found to be governed by the diffusion and swelling rate of the shrinkage hydrogel network. The Korsmeyer-Peppas equation diffusion exponents (n) for SPE release from the hydrogels are >2.063, indicating a super case II transport. These data demonstrate CMC/PVA hydrogels have potential applications in oral peptide delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Álcool de Polivinil , Sistemas de Liberação de Medicamentos/métodos , Álcool de Polivinil/química , Carboximetilcelulose Sódica , Glycine max , Concentração de Íons de Hidrogênio , Peptídeos , Hidrogéis/química
7.
Environ Pollut ; 339: 122739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852313

RESUMO

The nitrogen deposition has the potential to alter the trait composition of plant communities by affecting the fitness and physiological adaptation of species, consequently exerting an influence on ecosystem processes. Despite the importance of bryophytes in nutrient and carbon dynamics across different ecosystems, there is a lack of research examining the relationship between nitrogen deposition and the co-variation of bryophyte traits. To address this gap, a meta-analysis was conducted using data from 27 independent studies to investigate potential associations between trait co-variation of bryophytes and nitrogen deposition. The results revealed that interspecific variability regulates the influence of nitrogen deposition on bryophytes by affecting trait co-variation. Multiple correspondence analysis identified six combinations of closely related traits. For example, species with unbranched main stems frequently exhibit robust leaf midribs, leading to leaf wrinkling and leaf clasping around the stem as a response to water loss. Some weft or mat species tend to obtain resources (nitrogen) through their scale hairs on the main stem. Some species with narrow leaves require leaf teeth to maintain a normal leaf shape. The subgroup analyses indicated that certain traits, including unbranched main stem, changes in leaf morphology, robust leaf midrib, main stem without scale hairs, narrow leaf, leaf margin with teeth, undeveloped apophysis, and erect capsule minimize interaction with pollutants and represent a resource strategy. Conversely, functional traits representing a resource acquisition strategy, such as branched main stem, no changes in leaf morphology, short and weak leaf midrib, main stem with scale hairs, broad leaf, leaf margin without teeth, developed apophysis, and non-erect capsule increase pollutant exposure. Overall, our results suggest that anthropogenic global change may significantly impact bryophytes due to changes in their individual physiology and colony ecological indicators caused by increased nitrogen deposition.


Assuntos
Briófitas , Ecossistema , Nitrogênio , Plantas , Folhas de Planta/fisiologia
8.
Bioresour Technol ; 344(Pt B): 126298, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748982

RESUMO

A pretreatment method combining ball-milling, ultrasound, and hydrothermal treatment was developed to produce xylooligosaccharides (XOS) and glucose with a high yield from corn stover. Under optimal conditions, the yield of XOS reached 80.40%, and the functional XOS (X2-X4) took up to 26.97%. Small amount of inhibitors were formed during the hydrothermal process. Enzymatic hydrolysis of the hydrothermally pretreated residue gave 92.60% yield of glucose, leaving lignin as the final residue which accounted for 66.82% of native lignin. The correlations between the yield of glucose and the physio-chemical properties of corn stover, such as crystalline index, particle size, and the removal of xylan, were established to understand the recalcitrance removal during the pretreatment process. Results demonstrate that this combined pretreatment method is a green and effective process to selectively separate the hemicellulose fractions and improve both production of XOS and glucose yield.


Assuntos
Glucose , Oligossacarídeos , Hidrólise , Lignina , Xilanos
9.
Sci Rep ; 9(1): 11597, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406182

RESUMO

Lignin is a phenylpropanoid polymer produced in the secondary cell walls of vascular plants. Although most eudicot and gymnosperm species generate lignins solely via polymerization of p-hydroxycinnamyl alcohols (monolignols), grasses additionally use a flavone, tricin, as a natural lignin monomer to generate tricin-incorporated lignin polymers in cell walls. We previously found that disruption of a rice 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (OsCAldOMT1) reduced extractable tricin-type metabolites in rice vegetative tissues. This same enzyme has also been implicated in the biosynthesis of sinapyl alcohol, a monolignol that constitutes syringyl lignin polymer units. Here, we further demonstrate through in-depth cell wall structural analyses that OsCAldOMT1-deficient rice plants produce altered lignins largely depleted in both syringyl and tricin units. We also show that recombinant OsCAldOMT1 displayed comparable substrate specificities towards both 5-hydroxyconiferaldehyde and selgin intermediates in the monolignol and tricin biosynthetic pathways, respectively. These data establish OsCAldOMT1 as a bifunctional O-methyltransferase predominantly involved in the two parallel metabolic pathways both dedicated to the biosynthesis of tricin-lignins in rice cell walls. Given that cell wall digestibility was greatly enhanced in the OsCAldOMT1-deficient rice plants, genetic manipulation of CAldOMTs conserved in grasses may serve as a potent strategy to improve biorefinery applications of grass biomass.


Assuntos
Parede Celular/metabolismo , Flavonoides/biossíntese , Lignina/biossíntese , Metiltransferases/metabolismo , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Agric Food Chem ; 59(16): 8691-701, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21749036

RESUMO

Lignocellulose materials are potentially valuable resources for transformation into biofuels and bioproducts. However, their complicated structures make it difficult to fractionate them into cellulose, hemicelluloses, and lignin, which limits their utilization and economical conversion into value-added products. This study proposes a novel and feasible fractionation method based on complete dissolution of bagasse in 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl) followed by precipitation in acetone/water (9:1, v/v) and extraction with 3% NaOH solution. The ionic liquid [C(4)mim]Cl was easily recycled after concentration and treatment with acetonitrile. (1)H NMR analysis confirmed that there was no obvious difference between the recycled [C(4)mim]Cl and fresh material. Bagasse was fractionated with this method to 36.78% cellulose, 26.04% hemicelluloses, and 10.51% lignin, accounting for 47.17 and 33.85% of the original polysaccharides and 54.62% of the original lignin, respectively. The physicochemical properties of the isolated fractions were characterized by chemical analysis, high-performance anion exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), and (1)H and 2D (13)C-(1)H correlation (HSQC) nuclear magnetic resonance spectroscopy. The results showed that the acetone-soluble lignin and alkaline lignin fractions had structures similar to those of milled wood lignin (MWL). The easy extraction of the noncellulose components from homogeneous bagasse solution and amorphous regenerated materials resulted in the relatively high purity of cellulosic fraction (>92%). The hemicellulosic fraction was mainly 4-O-methyl-D-glucuronoxylans with some α-L-arabinofuranosyl units substituted at C-2 and C-3.


Assuntos
Celulose/isolamento & purificação , Lignina/isolamento & purificação , Polissacarídeos/isolamento & purificação , Celulose/química , Fracionamento Químico/métodos , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Líquidos Iônicos , Lignina/química
11.
J Biomed Mater Res A ; 93(1): 269-79, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19562749

RESUMO

A ZnO containing nano-hydroxyapatite/chitosan (n-HA/CS) cement was developed and its bone formation ability was investigated in vitro and in vivo. The physico-chemical properties of the cement were determined in terms of pH variation during and after setting, injectability and wettability. The results indicated that, the pH varied from 7.04 to 7.12 throughout the soaking of the cement in distilled water. The injectability was excellent during the first 4 min, but the cement became less injectable or even not injectable at all after 7 min setting. The static contact angle of the cement against water was 53.5 +/- 2.7 degrees . The results of immersion tests in simulated body fluid (SBF) indicated that the cement exhibited excellent bone-like apatite forming ability. In vivo studies, involving the installation of the cement of tibial-bone defects in rabbit tibia revealed an inflammatory response around the cement at 3 days of implantation. After 4 weeks, the inflammation began to disappear and the cement had bound to the surrounding host bone. Radiological examination also confirmed that the ZnO containing n-HA/CS cement significantly induced new bone formation. These results suggest that the ZnO containing n-HA/CS cement may be beneficial to enhance bone regeneration in osseous defect sites.


Assuntos
Cimentos Ósseos/farmacologia , Quitosana/farmacologia , Durapatita/farmacologia , Nanopartículas/química , Óxido de Zinco/farmacologia , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Cálcio/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Implantes Experimentais , Microscopia Eletrônica de Varredura , Fósforo/metabolismo , Coelhos , Radiografia , Fatores de Tempo , Molhabilidade/efeitos dos fármacos
12.
J Mater Sci Mater Med ; 18(3): 529-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17334705

RESUMO

Bioactive biomaterials can form a bone-like apatite layer on their surfaces in the body, which is critical to establishing bone bonding between bioactive materials and living tissue. At present study, the bone-like apatite formation in vitro and vivo on the surface of the nano apatite/polyamide composite was studied, and the bioactive composites implanted into the femora of rabbits were also investigated. The results revealed that the bone-like apatite containing carbonate can form on the surface of the biocomposite both in SBF and dorsal muscle of rabbits, and the composite would form directly combination with the natural bone without fibrous capsule tissue between implant and host bone tissue. All of these indicated that the nano biocomposites have excellent bioactivity and can be used for bone replacement.


Assuntos
Materiais Biocompatíveis , Nanocompostos , Animais , Apatitas/química , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Implantes Experimentais , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nylons/química , Osseointegração , Coelhos , Espectrofotometria Infravermelho , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA