Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biofabrication ; 14(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021164

RESUMO

Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaline phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.


Assuntos
Poliésteres , Alicerces Teciduais , Ligamentos , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Redação
2.
Int J Pharm ; 601: 120525, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33781878

RESUMO

Preparing wound dressing with dual-delivery of antioxidant and antibacterial agents is highly desirable in clinical wound treatment. Herein, a series of coaxial nanofiber membranes loaded with antioxidant tea polyphenols (TP) in the core and antibacterial ε-poly (L-lysine) (ε-PL) in the shell layer were successfully fabricated by coaxial electrospinning. The physicochemical characterizations by transmission electron microscopy, inverted fluorescence microscopy and fourier transform infrared spectroscopy confirmed the formation of core-shell structure. The results of in vitro drug release indicated that ε-PL exhibited a fast release profile while TP released in a sustained manner, which is favorable to the achievement of quick bacteria inhibition in the initial phase as well as long-term antioxidant activity during wound healing. The antioxidant activity of coaxial nanofibers was found to be increased with the increment of TP content and incubation time. The antibacterial assays against Escherichia coli and Staphylococcus aureus demonstrated that the incorporation of ε-PL in the coaxial nanofibers led to strong antibacterial activity. Additionally, all the coaxial nanofibers possessed good cytocompatibility. Therefore, the prepared coaxial nanofibers simultaneously incorporated with ε-PL and TP are promising as potential wound dressing materials.


Assuntos
Nanofibras , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes , Bandagens , Lisina , Poliésteres , Polifenóis , Chá
3.
Mater Sci Eng C Mater Biol Appl ; 128: 112287, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474838

RESUMO

As an emerging 3D printing technique, melt electrospinning writing (MEW) has been used to fabricate scaffolds with controllable structure and good mechanical strength for bone regeneration. However, how to further improve MEW scaffolds with nanoscale extracellular matrix (ECM) mimic structure and bioactivity is still challenging. In this study, we proposed a simple composite process by combining MEW and solution electrospinning (SE) to fabricate a micro/nano hierarchical scaffold for bone tissue engineering. The morphological results confirmed the hierarchical structure with both well-defined MEW microfibrous grid structure and SE random nanofiber morphology. The addition of gelatin nanofibers turned the scaffolds to be hydrophilic, and led to a slight enhancement of mechanical strength. Compared with PCL MEW scaffolds, higher cell adhesion efficiency, improved cell proliferation and higher osteoinductive ability were achieved for the MEW/SE composite scaffolds. Finally, multilayer composite scaffolds were fabricated by alternately stacking of MEW layer and SE layer and used to assess the effect on cell ingrowth in the scaffolds. The results showed that gelatin nanofibers did not inhibit cell penetration, but promoted the three-dimensional growth of bone cells. Thus, the strategy of the combined use of MEW and SE is a potential method to fabricate micro/nano hierarchical scaffolds to improve bone regeneration.


Assuntos
Gelatina , Alicerces Teciduais , Regeneração Óssea , Poliésteres , Redação
4.
Int J Pharm ; 576: 118941, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881261

RESUMO

Implanted scaffold or bone substitute is a common method to treat bone defects. However, the possible bone infection caused by orthopaedic surgery has created a challenging clinical problem and generally invalidate bone repair and regeneration. In this study, a poly (ε-caprolactone) (PCL)/polyethylene glycol (PEG)/roxithromycin (ROX) composite scaffold was prepared via melt electrohydrodynamic (EHD) 3D printing. Fourier transform infrared spectroscopy (FTIR) spectroscopy was performed to verify the existence of PEG and ROX in the scaffolds. By water contact angle measurement, the addition of both PEG and ROX was found to improve the hydrophilicity of the scaffolds. By in vitro drug release assay, the PCL/PEG/ROX scaffolds showed an initial burst drug release and subsequent long-term sustained release behaviour, which is favourable for the prevention and treatment of bone infections. The antibacterial assays against E. coli and S. aureus demonstrated that the composite scaffold with ROX possessed effective antibacterial activity, especially for S. aureus, the main cause of bone infection. The immunostaining and MTT assay with human osteoblast-like cells (MG63) indicated that cells showed good viability and growth on the scaffolds. Therefore, the melt EHD 3D printed PCL/PEG/ROX scaffold could be a promising anti-infective implant for bone tissue engineering.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Doenças Ósseas Infecciosas/tratamento farmacológico , Poliésteres/química , Polietilenoglicóis/química , Roxitromicina/química , Roxitromicina/farmacologia , Doenças Ósseas Infecciosas/microbiologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/microbiologia , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Osteoblastos/efeitos dos fármacos , Osteoblastos/microbiologia , Osteogênese/efeitos dos fármacos , Porosidade , Impressão Tridimensional , Staphylococcus aureus/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
J Agric Food Chem ; 67(8): 2227-2234, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30715872

RESUMO

Natural and edible materials have attracted increasing attention in food packaging, which could overcome the serious environmental issues caused by conventional non-biodegradable synthetic packaging. In this work, gelatin nanofibers incorporated with two kinds of essential oil (EO), peppermint essential oil (PO) and chamomile essential oil (CO), were fabricated by electrospinning for potential edible packaging application. Electron microscopy showed that smooth and uniform morphology of the gelatin/EOs was obtained, and the diameter of nanofibers was mostly enlarged with the increase of the EO content. The proton nuclear magnetic resonance spectrum confirmed the existence of PO and CO in nanofibers after electrospinning. The addition of EOs led to an enhancement of the water contact angle of nanofibers. The antioxidant activity was significantly improved for the nanofibers loaded with CO, while the antibacteria activity against Escherichia coli and Staphylococcus aureus was better for the fibers with PO addition. The combination of half PO and half CO in nanofibers compensated for their respective limitations and exhibited optimum bioactivities. Finally, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay with NIH-3T3 fibroblasts demonstrated the absence of cytotoxicity of the gelatin/EO nanofibers. Thus, our studies suggest that the developed gelatin/PO/CO nanofiber could be a promising candidate for edible packaging.


Assuntos
Camomila/química , Embalagem de Alimentos/instrumentação , Gelatina/química , Mentha piperita/química , Nanofibras/química , Óleos Voláteis/química , Óleos de Plantas/química , Polímeros/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA