Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(40): 18494-18503, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167521

RESUMO

Site-selective acetylation of a single lysine residue in a protein that reaches a lysine acetyltransferase's accuracy, precision, and reliability is challenging. Here, we report a peptide-guided, proximity-driven group transfer reaction that acetylates a single lysine residue, Lys 248, of the fragment crystallizable region (Fc region) in the heavy chain of the human Immunoglobulin G (IgG). An Fc-interacting peptide bound with the Fc domain and positioned a phenolic ester close to Lys 248, which induced a nucleophilic reaction and resulted in the transfer of an acetyl group to Lys 248. The acetylation reaction proceeded to a decent yield under the physiological condition without the need for deglycosylation, unnatural amino acids, or catalysts. Along with acetylation, functional moieties such as azide, alkyne, fluorescent molecules, or biotin could also be site-selectively installed on Lys 248, allowing IgG's further derivatization. We then synthesized an antibody-lipid conjugate and constructed antibody-conjugated liposomes (immunoliposomes), targeting HER2-positive (HER2+) cancer cells. We also built a bispecific antibody complex (bsAbC) covalently linking an anti-HER2 antibody and an anti-CD3 antibody. The bsAbC showed in vitro effector-cell-mediated cytotoxicity at nanomolar concentrations. Compared with bispecific antibodies (bsAbs), bsAbCs are constructed based on native IgGs and contain two antigen-binding sites to each antigen, twice that of bsAbs. Altogether, this work reports a method of site-selective acetylation of native antibodies, highlights a facile way of site-selective IgG functionalization, and underscores the potential of bsAbCs in cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Lisina Acetiltransferases , Acetilação , Alcinos , Anticorpos Biespecíficos/química , Azidas , Biotina , Ésteres , Humanos , Imunoglobulina G/química , Lipídeos , Lipossomos , Lisina , Reprodutibilidade dos Testes
2.
Langmuir ; 34(46): 14033-14045, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30360612

RESUMO

Polydopamine (PDA)-coated nanoparticles are adhesive bionanomaterials widely utilized in intracellular applications, yet how their adhesiveness affects their colloidal stability and their interactions with serum proteins and mammalian cells remain unclear. In this work, we systematically investigate the combined effects of dopamine (DA) concentration and polymerization time (both reaction parameters spanning 2 orders of magnitude) on the morphological diversity of PDA-coated nanoparticles by coating PDA onto gold nanoparticle cores. Independent of the DA concentration, Au@PDA NPs remain largely aggregated upon several hours of limited polymerization; interestingly, extended polymerization for 2 days or longer yield randomly aggregated NPs, nearly monodisperse NPs, or worm-like NP chains in the ascending order of DA concentration. Upon exposure to serum proteins, the specific type of proteins adsorbed to the Au@PDA NPs strongly depends upon the DA concentration. As DA concentration increases, less albumin and more hemoglobin subunits adhere. Moreover, cellular uptake is a strong function of polymerization time. Serum-stabilized Au@PDA NPs prepared by limited polymerization enter Neuro-2a and HeLa cancer cells more abundantly than those prepared by extended polymerization. Our data underscore the importance of DA concentration and polymerization time for tuning the morphology and degree of intracellular delivery of PDA-coated nanostructures.


Assuntos
Ouro/química , Indóis/química , Nanopartículas Metálicas/química , Polímeros/química , Coroa de Proteína/química , Adsorção , Transporte Biológico , Dopamina/química , Células HeLa , Humanos , Indóis/metabolismo , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA