Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 160, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822346

RESUMO

BACKGROUND: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS: This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS: Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.


Assuntos
Hidroxibutiratos , Metano , Methylosinus trichosporium , Esgotos , Esgotos/microbiologia , Methylosinus trichosporium/metabolismo , Hidroxibutiratos/metabolismo , Metano/metabolismo , Poliésteres/metabolismo , Biodegradação Ambiental , Águas Residuárias/microbiologia , Poli-Hidroxibutiratos
2.
J Clin Periodontol ; 47(11): 1354-1361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841379

RESUMO

AIM: This cross-sectional study aimed to examine the diagnostic ability of salivary matrix metalloproteinase (MMP)-9 lateral flow test (LFT) point-of-care (POC) kit and develop an algorithm for diagnosis of periodontitis. MATERIALS AND METHODS: Through Seoul National Dental Hospital, 137 participants (46 LFT negatives, 91 LFT positives) were recruited. For salivary diagnostics, 150 µl of the unstimulated saliva was applied to LFT-POC kit. To make a diagnosis of periodontitis, stage II-IV in modified new international classification system was used. Covariates encompassing age, sex, smoking and obesity were evaluated through face-to-face interview. Enzyme-linked immunosorbent assay was used for quantification of salivary MMP-9. To develop a diagnostic algorithm, multivariable logistic regression analysis was used. Receiver operating characteristic curve was applied for evaluating diagnostic ability. RESULTS: Diagnostic ability of salivary MMP-9 LFT-POC test was 0.82 (sensitivity of 0.92, specificity of 0.72) in total participants. Diagnostic algorithm using POC test resulted in a response equation, that is algorithm score = -3.675 + 2.877*LFT + 0.034*age + 0.121*sex + 0.372*smoking + 0.192*obesity. Diagnostic ability of the algorithm was 0.88 (sensitivity of 0.92, specificity of 0.85) with cut-off score of 0.589. CONCLUSIONS: Salivary MMP-9 LFT-POC kit showed appropriate diagnostic ability for periodontitis and would be an efficient tool for screening of periodontitis.


Assuntos
Metaloproteinase 9 da Matriz , Periodontite , Biomarcadores , Estudos Transversais , Humanos , Lactente , Metaloproteinase 8 da Matriz , Periodontite/diagnóstico , Testes Imediatos , Saliva
3.
Waste Manag Res ; 36(10): 952-964, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30067149

RESUMO

We present the experimental results of an optimal recycling method for waste carbon fibre reinforced plastics (CFRPs) that is based on the application of a set of unit mechanochemical processes. The objectives of this study were to highlight the influence of process factors that are inherent in the chemical recycling process of waste CFRP. We investigated the influence of the soaking period, the application of a catalyst and impurities on the recycling process and recovery efficiency of the waste CFRP. Different combinations of the unit mechanochemical processes were investigated, and the effectiveness of the combination was analysed. The chemical recycling process was conducted using benzyl alcohol under ordinary pressure at initial solvent temperatures lower/equivalent to its flash point temperature. Experimental results showed that the solvent temperature increased up to boiling temperature levels when the mechanochemical process was initiated, thereby enhancing the mechanochemical process. The presence of impurities did not influence the recovery rate. Likewise, this experimental study highlighted the importance of accounting for the soaking period during the chemical recycling process: an extended soaking period resulted in a higher recovery rate, a lower portion of undissolved solids and recovered fibres of better quality. This research highlighted the significance of choosing the proper combination for the chemical recycling process as well as the benefits of recycling the waste CFRP with negligible application of the catalyst.


Assuntos
Fibra de Carbono , Reciclagem , Carbono , Plásticos
4.
Environ Sci Technol ; 50(13): 7106-15, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27268462

RESUMO

Oxidation by persulfates at elevated temperatures (thermally activated persulfates) disintegrates bacterial cells and extracellular polymeric substances (EPS) composing waste-activated sludge (WAS), facilitating the subsequent sludge dewatering. The WAS disintegration process by thermally activated persulfates exhibited different behaviors depending on the types of persulfates employed, that is, peroxymonosulfate (PMS) versus peroxydisulfate (PDS). The decomposition of PMS in WAS proceeded via a two-phase reaction, an instantaneous decomposition by the direct reaction with the WAS components followed by a gradual thermal decay. During the PMS treatment, the WAS filterability (measured by capillary suction time) increased in the initial stage but rapidly stagnated and even decreased as the reaction proceeded. In contrast, the decomposition of PDS exhibited pseudo first-order decay during the entire reaction, resulting in the greater and steadier increase in the WAS filterability compared to the case of PMS. The treatment by PMS produced a high portion of true colloidal solids (<1 µm) and eluted soluble and bound EPS, which is detrimental to the WAS filterability. However, the observations regarding the dissolved organic carbon, ammonium ions, and volatile suspended solids collectively indicated that the treatment by PMS more effectively disintegrated WAS compared to PDS, leading to higher weight (or volume) reduction by postcentrifugation.


Assuntos
Oxirredução , Esgotos/microbiologia , Polímeros , Eliminação de Resíduos Líquidos
5.
ACS Appl Bio Mater ; 7(5): 3441-3451, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38658190

RESUMO

Digital PCR (dPCR) has become indispensable in nucleic acid (NA) detection across various fields, including viral diagnostics and mutant detection. However, misclassification of partitions in dPCR can significantly impact accuracy. Despite existing methods to minimize misclassification bias, accurate classification remains elusive, especially for nonamplified target partitions. To address these challenges, this study introduces an innovative microdroplet-based competitive PCR platform for nucleic acid quantification in microfluidic devices independent of Poisson statistics. In this approach, the target concentration (T) is determined from the concentration of competitor DNA (C) at the equivalence point (E.P.), where C/T is 1. Competitive PCR ensures that the ratio of target to competitor DNA remains constant during amplification, reflected in the resultant fluorescence intensity, allowing the quantification of target DNA concentration at the equivalence point. The unique amplification technique eliminates Poisson distribution, addressing misclassification challenges. Additionally, our approach reduces the need for post-PCR procedures and shortens analytical time. We envision this platform as versatile, reproducible, and easily adaptable for driving significant progress in molecular biology and diagnostics.


Assuntos
DNA , DNA/química , Distribuição de Poisson , Teste de Materiais , Reação em Cadeia da Polimerase , Ácidos Nucleicos/análise , Materiais Biocompatíveis/química , Tamanho da Partícula , Dispositivos Lab-On-A-Chip
6.
Langmuir ; 29(10): 3474-81, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23406215

RESUMO

An effective polymeric thin film deposited by initiated chemical vapor deposition (iCVD) process was presented and its application as a barrier film on the PDMS micromold blocking the penetration of oxygen and organic solvents was investigated. With this barrier film, we were able to synthesize monodisperse polymeric particles of sizes down to 3 µm, which has been reported to be extremely challenging with bare PDMS micromold. The polymeric barrier film on the PDMS micromold enabled this successful synthesis of microparticles by effectively blocking the diffusion of oxygen, which is a well-known radical quencher in radical polymerization, through the PDMS micromold. Furthermore, the iCVD barrier film substantially decreased the penetration of various organic solvents such as acetone, tert-butanol, PDMS oil, and decane as well as organic substances including fluorescent molecules like rhodamine B and fluorescein isothiocyanate (FITC). Therefore, the polymeric barrier film coated on PDMS micromold via iCVD process will broaden the application of PDMS to microfluidic area for the synthesis of smaller microparticles with various organic substances.


Assuntos
Dimetilpolisiloxanos/química , Oxigênio/química , Polímeros/química , Solventes/química , Acetona/química , Alcanos/química , terc-Butil Álcool/química
7.
Acta Biomater ; 159: 382-393, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669550

RESUMO

Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system.


Assuntos
Substitutos Ósseos , Durapatita , Camundongos , Animais , Durapatita/química , Cálcio/química , Alendronato/uso terapêutico , Carbono , Camundongos Nus , Imagem Óptica , Impressão Tridimensional
8.
Sensors (Basel) ; 12(8): 10136-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112592

RESUMO

Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets of uniform size and shape are prepared through a flow-focusing method in a microfluidic device and converted into microcapsules through hydrogel polymerization. The size of microdroplets can be controlled by changing both the dispersion and continuous flow rate. Poly(N-isoproplyacrylamide) (PNIPAM), known as a hydrogel material, was employed as a biocompatible material for the encapsulation of BT spores and long-term storage and outstanding stability. Due to these unique properties of PNIPAM, the nutrients from Luria-Bertani complex medium diffused into the microcapsules and the microencapsulated spores germinated into vegetative cells under adequate environmental conditions. These results suggest that there is no limitation of transferring low-molecular-weight-substrates through the PNIPAM structures, and the viability of microencapsulated spores was confirmed by the culture of vegetative cells after the germinations. This microfluidic-based microencapsulation methodology provides a unique way of synthesizing bioactive microcapsules in a one-step process. This microfluidic-based strategy would be potentially suitable to produce microcapsules of various microbial spores for on-site biosensor analysis.


Assuntos
Bacillus thuringiensis/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Resinas Acrílicas/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Técnicas Biossensoriais/instrumentação , Biotecnologia/instrumentação , Citometria de Fluxo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrogéis/química , Tamanho da Partícula , Esporos Bacterianos/química
9.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055281

RESUMO

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of rapid results, isothermal reaction conditions, and high sensitivity. However, this diagnostic system often produces false positive results due to a high rate of non-specific reactions caused by formation of hairpin structures, self-dimers, and mismatched hybridization. The non-specific signals can be due to primers used in the methods because the utilization of multiple LAMP primers increases the possibility of self-annealing of primers or mismatches between primers and templates. In this study, we report a nanomaterial-assisted LAMP method that uses a graphene oxide-gold nanoparticles (AuNPs@GO) nanocomposite to enable the detection of foot-and-mouth disease virus (FMDV) with high sensitivity and specificity. Foot-and-mouth disease (FMD) is a highly contagious and deadly disease in cloven-hoofed animals; hence, a rapid, sensitive, and specific detection method is necessary. The proposed approach exhibited high sensitivity and successful reduction of non-specific signals compared to the traditionally established LAMP assays. Additionally, a mechanism study revealed that these results arose from the adsorption of single-stranded DNA on AuNPs@GO nanocomposite. Thus, AuNPs@GO nanocomposite is demonstrated to be a promising additive in the LAMP system to achieve highly sensitive and specific detection of diverse diseases, including FMD.

10.
Theranostics ; 12(15): 6762-6778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185599

RESUMO

Background: Single imaging modality is still insufficient to evaluate the biological and anatomical structures of tumors with high accuracy and reliability. Generation of non-specific contrast, leading to a low target-to-background signal ratio, results in low imaging resolution and accuracy. Tumor environment-specific activatable multifunctional contrast agents need to maximize the contrast signals, representing a dual imaging-guided photothermal therapy (PTT) at target tumor sites. Methods: Cellular uptake, cytotoxicity assay, and in vitro photothermal conversion efficiency of MnCO3-mineralized fluorescent polydopamine nanoparticles (MnCO3-FPNPs) were evaluated using 4T1 breast cancer cells. In vivo dual-modality imaging was performed using IVIS imaging and a 4.7 T animal MRI systems after injection into 4T1 tumor-bearing nude mice. The effects of photothermal therapeutic through PTT were measured after irradiation with an 808 nm laser (1.5 W/cm2) for 10 min, measuring the size of the tumors every 2 days. Results: At physiological pH (7.4), MnCO3-FPNP is efficiently quenched. Conversely, at acidic pH (5.4), the strong fluorescence (FL) is recovered due to the dissociation of Mn2+ from the FPNPs. At pH 7.4, MnCO3-FPNP activity is silenced to enhance water proton relaxation due to unionized MnCO3 maintenance; conversely, at acidic pH (5.4), MnCO3-FPNPs efficiently release Mn2+ ions, thereby resulting in T 1-weighted magnetic resonance (MR) contrast enhancement. MnCO3-FPNPs display a promising diagnostic ability for 4T1 breast cancer xenograft models, as well as exhibit a high photothermal conversion efficiency. A successful tumor treatment via their photothermal activity is accomplished within 14 days. Conclusions: Our studies exhibited unique "OFF-ON" activation abilities in FL/MR dual imaging and PTT functions. This approach suggests that the MnCO3-FPNPs may serve as a useful platform for various mineralization-based multimodal imaging-guided PTT models for many cancer theranostic applications.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Meios de Contraste/uso terapêutico , Humanos , Hipertermia Induzida/métodos , Indóis , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Terapia Fototérmica , Polímeros , Medicina de Precisão , Prótons , Reprodutibilidade dos Testes , Nanomedicina Teranóstica/métodos , Água
11.
J Colloid Interface Sci ; 600: 373-381, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023698

RESUMO

We report a simple method for producing polymeric microparticles with controlled three-dimensional (3D) shapes from two-dimensional (2D) micromolds via mold geometry-mediated tunable mold swelling and capillarity. Specifically, the photocurable solution confined in the mold with diverse geometries is spatially deformed by the addition of the wetting fluid, which triggers the mold swelling and capillarity; this allows the production of highly uniform microparticles with complex shape via photopolymerization. The results show that the swelling-induced mold deflection is varied depending on the mold geometry with different side lengths, allowing a tunable deformation of the photocurable solution and forming non-spherical particles with a convex top. The capillarity of the wetting fluid is also determined by the mold geometry with different corner angles, leading to the directional movement of the photocurable solution via Laplace pressure-driven flow and facilitating the production of spherical particles with or without shape imprinting. Furthermore, we demonstrate a capability to further enhance the mold swelling by varying mold composition, expanding their controllability in 3D shape, and enabling simultaneous production of spherical and non-spherical particles using a single mold.


Assuntos
Polímeros , Ação Capilar , Molhabilidade
12.
Biomolecules ; 11(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198783

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for the specific detection of FMDV serotypes O and A by utilizing a magnetic nanoparticle labeling technique with resorufin ß-d-glucopyranoside (res-ß-glc) and ß-glucosidase (ß-glc), without the use of typical lateral flow assay or polymerase chain reaction. FMDV serotypes O and A were reacted with pan-FMDV antibodies that recognize all seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3). The antigen-antibody complex was then immobilized on magnetic nanoparticles and reacted with ß-glc-conjugated FMDV type O or type A antibodies. Subsequently, the addition of res-ß-glc resulted in the release of fluorescent resorufin and glucose owing to catalytic hydrolysis by ß-glc. The detection limit of fluorescent signals using a fluorescence spectrophotometer was estimated to be log(6.7) and log(5.9) copies/mL for FMDV type O and A, respectively, while that of electrochemical signals using a glucometer was estimated to be log(6.9) and log(6.1) copies/mL for FMDV type O and A, respectively. Compared with a commercially available lateral flow assay diagnostic kit for immunochromatographic detection of FMDV type O and A, this dual-modal detection platform offers approximately four-fold greater sensitivity. This highly sensitive and accurate dual-modal detection method can be used for effective disease diagnosis and treatment, and will find application in the early-stage diagnosis of viral diseases and next-generation diagnostic platforms.


Assuntos
Técnicas Eletroquímicas/métodos , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/metabolismo , Sorogrupo , Sorotipagem/métodos , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Vírus da Febre Aftosa/isolamento & purificação , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Nanopartículas Magnéticas de Óxido de Ferro/química
13.
Chemosphere ; 265: 129161, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302201

RESUMO

A new porphyrinic porous organic polymer (PPOP) with high stability and excellent textural properties (929 m2/g surface area with 0.73 cm3/g pore volume) was made via the Friedel-Crafts reaction and applied for bisphenol A (BPA) adsorption in water. The material was examined by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state 13C CP-MAS nuclear magnetic resonance spectroscopy. PPOP was proven highly effective for capturing BPA among the many adsorbent materials investigated. The Langmuir model could closely match the adsorption isotherm data with a high adsorption amount of ca. 653 mg/g at 25 °C. Approximately 95% of BPA was adsorbed in 50 min, and the pseudo-second-order kinetic model satisfactorily described the adsorption behavior. This adsorption process was exothermic (ΔH° = -39.10 kJ/mol), and the capacity gradually decreased with increasing pH. Spectroscopic analyses indicated that the BPA adsorption on PPOP was affected by (1) π-π interaction between BPA and the aromatic constituents of PPOP, (2) hydrogen bonding between the N sites of porphyrin units in PPOP and the hydroxyl group of BPA and, and (3) hydrophobic interactions. PPOP was easily regenerated after acetone washing, and >98% efficiency was observed throughout the five repeated adsorption-desorption cycles.


Assuntos
Polímeros , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Porosidade , Água , Poluentes Químicos da Água/análise
14.
Anal Chem ; 82(13): 5851-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527819

RESUMO

We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection.


Assuntos
DNA/química , Hidrogéis/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Acrilatos/química , Sondas de DNA/química , Corantes Fluorescentes/química , Microbiologia de Alimentos , Microscopia de Fluorescência , Polietilenoglicóis/química
15.
Biotechnol Bioeng ; 107(4): 747-51, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20632371

RESUMO

We report herein an effective strategy for encapsulating Escherichia coli in polyethylene glycol diacrylate (PEGDA) microdroplets using a microfluidic device and chemical polymerization. PEGDA was employed as a reactant due to the biocompatibility, high porosity, and hydrophilic property. The uniform size and shape of microdroplets are obtained in a single-step process using microfluidic device. The size of microdroplets can be controlled through the changing continuous flow rate. The combination of microdroplet generation and chemical polymerization techniques provide unique environment to produce non-toxic ways of fabricating microorganism-encapsulated hydrogel microbeads. Due to these unique properties of micro-sized hydrogel microbeads, the encapsulated E. coli can maintain viability inside of microbeads and green fluorescent protein (GFP) and red fluorescent protein (RFP) genes are efficiently expressed inside of microbeads after isopropyl-ß-D-thiogalactopyranoside induction, suggesting that there is no low-molecular weight substrate transfer limitation inside of microbeads. Furthermore, non-toxic, gentle, and outstanding biocompatibility of microbeads, the encapsulated E. coli can be used in various applications including biotransformation, biosensing, bioremediation, and engineering of artificial cells.


Assuntos
Biotecnologia/métodos , Células Imobilizadas/fisiologia , Escherichia coli/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato , Polietilenoglicóis , Técnicas Biossensoriais , Biotransformação , Células Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Viabilidade Microbiana , Proteína Vermelha Fluorescente
16.
J Nanosci Nanotechnol ; 10(10): 6920-4, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137825

RESUMO

We have attempted to synthesize water-soluble poly(para-phenylene) derivative, poly{[2,5-bis(3-sulfonatobutoxy)-1,4-phenylene sodium salt]-alt-(1,4-phenylene)} (PPP-SO3). Aldehyde groups, versatile functional intermediate groups for immobilization of biomolecules, were introduced at both ends of PPP-SO3 chain to produce PPP-SO3-CHO. PPP-SO3-CHO showed good solubility in aqueous solution and blue emission color, which was expected as an energy donor in FRET mechanism. Biotin was attached to the polymer end groups via imine linkage to use as a ligand for streptavidin immobilization. The biotin coupled with polymer chain enables the polymer to bind with FITC-streptavidin leading to energy transfer from the blue-emitting polymer to green-emitting FITC via FRET.


Assuntos
Aldeídos/química , Cicloparafinas/síntese química , Transferência Ressonante de Energia de Fluorescência/métodos , Fenóis/síntese química , Polímeros/síntese química , Biotina/química , Biotina/metabolismo , Cicloparafinas/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fenóis/química , Polímeros/química , Ligação Proteica , Solubilidade , Espectrometria de Fluorescência , Estreptavidina/química , Estreptavidina/metabolismo , Água/química
17.
Nanomaterials (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993046

RESUMO

The polymerase chain reaction (PCR) has become a powerful molecular diagnostic technique over the past few decades, but remains somewhat impaired due to low specificity, poor sensitivity, and false positive results. Metal and carbon nanomaterials, quantum dots, and metal oxides, can improve the quality and productivity of PCR assays. Here, we describe the ability of PCR assisted with nanomaterials (nano-PCR) comprising a nanocomposite of graphene oxide (GO) and gold nanoparticles (AuNPs) for sensitive detection of the foot-and-mouth disease virus (FMDV). Graphene oxide and AuNPs have been widely applied as biomedical materials for diagnosis, therapy, and drug delivery due to their unique chemical and physical properties. Foot-and-mouth disease (FMD) is highly contagious and fatal for cloven-hoofed animals including pigs, and it can thus seriously damage the swine industry. Therefore, a highly sensitive, specific, and practical method is needed to detect FMDV. The detection limit of real-time PCR improved by ~1000 fold when assisted by GO-AuNPs. We also designed a system of detecting serotypes in a single assay based on melting temperatures. Our sensitive and specific nano-PCR system can be applied to diagnose early FMDV infection, and thus may prove to be useful for clinical and biomedical applications.

18.
Lab Chip ; 9(22): 3236-42, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19865730

RESUMO

For cell-based biosensor applications, dissociated neurons have been cultured on planar microelectrode arrays (MEAs) to measure the network activity with substrate-embedded microelectrodes. There has been a need for a multi-well type platform to reduce the data collection time and increase the statistical power for data analysis. This study presents a novel method to convert a conventional MEA into a multi-well MEA with an array of micrometre-sized neuronal culture ('neuronal micro-circuit array'). An MEA was coated first with cell-adhesive layer (poly-D-lysine) which was subsequently patterned with a cell-repulsive layer (agarose hydrogel) to both pattern the cell adhesive region and isolate neuronal micro-circuits from each other. For a few weeks, primary hippocampal neurons were cultured on the agarose microwell MEA and the development of spontaneous electrical activities were characterized with extracellular action potentials. Using neurotransmission modulators, the simultaneous monitoring of drug responses from neuronal micro-circuit arrays was also demonstrated. The proposed approach will be powerful for neurobiological functional assay studies or neuron-based biosensor fields which require repeated trials to obtain a single data point due to biological variations.


Assuntos
Técnicas Biossensoriais , Hipocampo/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Neurônios/citologia , Animais , Células Cultivadas , Dimetilpolisiloxanos/química , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Microeletrodos , Técnicas Analíticas Microfluídicas/métodos , Nylons/química , Ratos , Ratos Sprague-Dawley , Sefarose/química
19.
Lab Chip ; 9(17): 2596-602, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19680584

RESUMO

We present a simple synthetic approach for the preparation of cell attachable Janus polyurethane (PU) microfibers in a microfluidic system. The synthesis was performed by using laminar flows of multiple streams with spontaneous formation of carbon dioxide bubbles resulting in an asymmetrically porous PU microfiber. The fabricated asymmetric microfiber (Janus microfiber) provides two distinctive properties: one is a porous region to promote the cellular adhesion and the other is a nonporous region rendering the mechanical strength of the scaffold. The Janus microfibers show dramatic improvement of cell adhesion, proliferation, and viability over a culture period. Cells cultured on the fibers easily bridged gaps between microfibers by joining together to form a cell sheet. The maximum distance between fibers that fibroblasts bridged is approximately 200 microm over 15 days. The Janus microfiber can be used for not only an alternative 2D cell culture plate but also as a novel 3D scaffold for tissue engineering without any need for elegant surface modification for enhancing cell adhesions.


Assuntos
Adesão Celular , Microfluídica , Poliuretanos , Células Cultivadas , Microfluídica/instrumentação , Microscopia Eletrônica de Varredura
20.
J Hazard Mater ; 378: 120724, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326765

RESUMO

Human urine is a unique solution that has the right composition to constitute both a severe environmental threat and a rich source of nitrogen and phosphorous. In fact, between 4-9% of urine mass consists of ions, such as K+, Cl-, Na+ or NH4+. Because of its high ionic strength, urine osmotic pressure can reach values of up to 2000 kPa. With this in mind, this work aimed to study the effectiveness of real urine as a novel draw solution for forward osmosis. Water flux, reverse nitrogen flux and membrane fouling were investigated using fresh or hydrolysed urine. Water flux as high as 16.7 ± 1.1 L m-2 h-1 was recorded using real hydrolysed urine. Additionally, no support layer membrane fouling was noticed in over 20 h of experimentation. Urine was also employed to dewater a Chlorella vulgaris culture. A fourfold increase in algal concentration was achieved while having an average flux of 14.1 L m-2 h-1. During the algae dewatering, a flux decrease of about 19% was noticed; this was mainly due to a thin layer of algal deposition on the active side of the membrane. Overall, human urine was found to be an effective draw solution for forward osmosis.


Assuntos
Microalgas/química , Osmose , Urina/química , Algoritmos , Carboidratos/biossíntese , Chlorella vulgaris , Filtração , Humanos , Membranas Artificiais , Microalgas/metabolismo , Nitrogênio/química , Água/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA