Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2217734120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888661

RESUMO

Degradable polymer matrices and porous scaffolds provide powerful mechanisms for passive, sustained release of drugs relevant to the treatment of a broad range of diseases and conditions. Growing interest is in active control of pharmacokinetics tailored to the needs of the patient via programmable engineering platforms that include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. Here we report a light-controlled, self-powered technology that bypasses key disadvantages of these systems, in an overall design that is bioresorbable. Programmability relies on the use of an external light source to illuminate an implanted, wavelength-sensitive phototransistor to trigger a short circuit in an electrochemical cell structure that includes a metal gate valve as its anode. Consequent electrochemical corrosion eliminates the gate, thereby opening an underlying reservoir to release a dose of drugs by passive diffusion into surrounding tissue. A wavelength-division multiplexing strategy allows release to be programmed from any one or any arbitrary combination of a collection of reservoirs built into an integrated device. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. In vivo demonstrations of programmed release of lidocaine adjacent the sciatic nerves in rat models illustrate the functionality in the context of pain management, an essential aspect of patient care that could benefit from the results presented here.


Assuntos
Implantes Absorvíveis , Sistemas de Liberação de Medicamentos , Ratos , Animais , Eletrônica , Polímeros
2.
Small ; 19(49): e2305017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528504

RESUMO

Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.


Assuntos
Implantes Absorvíveis , Eletrônica , Metais , Polímeros , Solventes
3.
Acc Chem Res ; 52(1): 91-99, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586283

RESUMO

The demand for novel electronics that can monitor human health, for example, the physical conditions of individuals, during daily life using different techniques from those used in traditional clinic diagnostic facilities is increasing. These novel electronics include stretchable sensor devices that allow various biosignals to be directly measured on human skin without restricting routine activity. The thin, skin-like characteristics of these devices enable stable operation under various deformations, such as stretching, pressing, and rubbing, experienced while attached to skin. The mechanically engineered design of these devices also minimizes the inconvenience caused by long-term wear owing to conformal lamination on the skin. The final form of a skin-attachable device must be an integrated platform with an independent and complete system containing all components on a single, thin, lightweight, stretchable substrate. To fabricate fully integrated devices, various aspects, such as material design for deformable interconnection, fabrication of high-performance active devices, miniaturization, and dense arrangement of component devices, should be considered. In particular, a power supply system is critical and must be combined in an electromechanically stable and efficient manner with all devices, including sensors. Additionally, the biosignals obtained by these sensors should be wirelessly transmitted to external electronic devices for free daily activity. This Account covers recent progress in developing fully integrated, stretchable, skin-attachable devices by presenting our strategies to achieve this goal. First, we introduce several integration methods used in this field to build stretchable systems with a special focus on the utilization of liquid gallium alloy. The unique characteristics and patterning process of liquid metal are summarized. Second, various skin-attachable sensors, including strain, pressure, with enhanced sensitivity and mechanical properties are discussed along with their applications for biosignal monitoring. Dual mode sensors that simultaneously detect temperature and pressure signals without interference are also introduced. Third, we emphasize supercapacitors as promising, efficient energy storage devices for power management systems in wearable devices. Supercapacitors for skin-attachable applications should have a high performance, such as high operation voltage, high energy and power densities, cyclic and air stability and water resistance. For this, strategies to select novel materials for electrode, electrolyte, and encapsulation are suggested. Several approaches to fabricate stretchable supercapacitor systems are also presented. Finally, we introduce recent examples of skin-attachable, stretchable electronics that integrate sensors, power management devices, and wireless data transfer functions on a single elastomer substrate. Conventional wireless technologies, such as near-field communications (NFC) and Bluetooth, are incorporated in miniaturized features on the devices. To date, much research has been performed in this field, but there are still many technologies to develop. The performance of individual devices and mass fabrication techniques should be enhanced. We expect that future electronic devices with fully integrated functions will include advanced human-machine interaction capabilities and expand the overall abilities of the human body.


Assuntos
Fontes de Energia Elétrica , Dispositivos Eletrônicos Vestíveis , Ligas/química , Técnicas Biossensoriais/métodos , Gálio/química , Humanos , Monitorização Fisiológica/métodos , Tecnologia sem Fio
4.
Small ; 15(51): e1905263, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31762183

RESUMO

A flexible liquid metal loudspeaker (LML) is demonstrated consisting of a gallium-based eutectic liquid metal (Galinstan) and basic aqueous electrolyte (NaOH(aq) ). The LML is driven by liquid metal motion induced by the electrochemically controlled interfacial tension of the Galinstan in NaOH(aq) electrolyte under an applied alternating current (AC) voltage. The fabricated LML produces sound waves in the human audible frequency band with a sound pressure level of ≈40-50 dB at 1 cm from the device and exhibits mechanical stability under bending deformation with a bending radius of 3 mm. Various sounds can be generated with the LML from a single tone to piano notes and human voices. To understand the underlying mechanism of sound generation by the LML, motion analyses, sound measurements, and electrical characterization are conducted at various frequencies. For the first time, this work suggests a new type of liquid metal-based electrochemically driven sound generator in the field of flexible acoustic devices that can be applied to future wearable electronics.


Assuntos
Eletroquímica/métodos , Metais/química , Ligas/química , Eletrólitos/química , Gálio/química , Humanos , Metais Pesados/química , Hidróxido de Sódio/química , Tensão Superficial
5.
Nat Commun ; 11(1): 5990, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239608

RESUMO

Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica/instrumentação , Traumatismos dos Nervos Periféricos/terapia , Poliuretanos/química , Tecnologia sem Fio/instrumentação , Animais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Feminino , Humanos , Teste de Materiais , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Ratos , Regeneração , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
6.
Adv Mater ; 28(4): 748-56, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26641239

RESUMO

A stretchable multisensor system is successfully demonstrated with an integrated energy-storage device, an array of microsupercapacitors that can be repeatedly charged via a wireless radio-frequency power receiver on the same stretchable polymer substrate. The integrated devices are interconnected by a liquid-metal interconnection and operate stably without noticeable performance degradation under strain due to the skin attachment, and a uniaxial strain up to 50%.


Assuntos
Fontes de Energia Elétrica , Ligas/química , Capacitância Elétrica , Técnicas Eletroquímicas , Gases/análise , Dióxido de Nitrogênio/análise , Polietilenotereftalatos/química , Ondas de Rádio , Raios Ultravioleta , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA