Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Periodontal Implant Sci ; 51(3): 213-223, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34114384

RESUMO

PURPOSE: The atmospheric pressure plasma jet (APPJ) has been introduced as an effective disinfection method for titanium surfaces due to their massive radical generation at low temperatures. Helium (He) has been widely applied as a discharge gas in APPJ due to its bactericidal effects and was proven to be effective in our previous study. This study aimed to evaluate the safety and effects of He-APPJ application at both the cell and tissue levels. METHODS: Cellular-level responses were examined using human gingival fibroblasts and osteoblasts (MC3T3-E1 cells). He-APPJ was administered to the cells in the experimental group, while the control group received only He-gas treatment. Immediate cell responses and recovery after He-APPJ treatment were examined in both cell groups. The effect of He-APPJ on osteogenic differentiation was evaluated via an alkaline phosphatase activity assay. In vivo, He-APPJ treatment was administered to rat calvarial bone and the adjacent periosteum, and samples were harvested for histological examination. RESULTS: He-APPJ treatment for 5 minutes induced irreversible effects in both human gingival fibroblasts and osteoblasts in vitro. Immediate cell detachment of human gingival fibroblasts and osteoblasts was shown regardless of treatment time. However, the detached areas in the groups treated for 1 or 3 minutes were completely repopulated within 7 days. Alkaline phosphatase activity was not influenced by 1 or 3 minutes of plasma treatment, but was significantly lower in the 5 minute-treated group (P=0.002). In vivo, He-APPJ treatment was administered to rat calvaria and periosteum for 1 or 3 minutes. No pathogenic changes occurred at 7 days after He-APPJ treatment in the He-APPJ-treated group compared to the control group (He gas only). CONCLUSIONS: Direct He-APPJ treatment for up to 3 minutes showed no harmful effects at either the cell or tissue level.

2.
J Periodontal Implant Sci ; 49(5): 319-329, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31681489

RESUMO

PURPOSE: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. METHODS: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). RESULTS: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. CONCLUSIONS: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA