Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4759-4770, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704189

RESUMO

Cellulose microfibrils (CMFs) are a major load-bearing component in plant cell walls. Thus, their structures have been studied extensively with spectroscopic and microscopic characterization methods, but the findings from these two approaches were inconsistent, which hampers the mechanistic understanding of cell wall mechanics. Here, we report the regiospecific assembly of CMFs in the periclinal wall of plant epidermal cells. Using sum frequency generation spectroscopic imaging, we found that CMFs are highly aligned in the cell edge region where two cells form a junction, whereas they are mostly isotropic on average throughout the wall thickness in the flat face region of the epidermal cell. This subcellular-level heterogeneity in the CMF alignment provided a new perspective on tissue-level anisotropy in the tensile modulus of cell wall materials. This finding also has resolved a previous contradiction between the spectroscopic and microscopic imaging studies, which paves a foundation for better understanding of the cell wall architecture, especially structure-geometry relationships.


Assuntos
Celulose , Células Vegetais , Celulose/química , Anisotropia , Microfibrilas/química , Parede Celular/química
2.
Sci Rep ; 13(1): 22007, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086837

RESUMO

In plant cells, cellulose synthase complexes (CSCs) are nanoscale machines that synthesize and extrude crystalline cellulose microfibrils (CMFs) into the apoplast where CMFs are assembled with other matrix polymers into specific structures. We report the tissue-specific directionality of CSC movements of the xylem and interfascicular fiber walls of Arabidopsis stems, inferred from the polarity of CMFs determined using vibrational sum frequency generation spectroscopy. CMFs in xylems are deposited in an unidirectionally biased pattern with their alignment axes tilted about 25° off the stem axis, while interfascicular fibers are bidirectional and highly aligned along the longitudinal axis of the stem. These structures are compatible with the design of fiber-reinforced composites for tubular conduit and support pillar, respectively, suggesting that during cell development, CSC movement is regulated to produce wall structures optimized for cell-specific functions.


Assuntos
Arabidopsis , Arabidopsis/química , Microfibrilas/química , Celulose/química , Parede Celular/química
3.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173053

RESUMO

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Assuntos
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenases de Função Mista/metabolismo , Madeira/metabolismo , Celulose/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
4.
J Phys Chem B ; 126(35): 6629-6641, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037433

RESUMO

Vibrational sum frequency generation (SFG) spectroscopy can specifically probe molecular species non-centrosymmetrically arranged in a centrosymmetric or isotropic medium. This capability has been extensively utilized to detect and study molecular species present at the two-dimensional (2D) interface at which the centrosymmetry or isotropy of bulk phases is naturally broken. The same principle has been demonstrated to be very effective for the selective detection of non-centrosymmetric crystalline nanodomains interspersed in three-dimensional (3D) amorphous phases. However, the full spectral interpretation of SFG features has been difficult due to the complexity associated with the theoretical calculation of SFG responses of such 3D systems. This paper describes a numerical method to predict the relative SFG intensities of non-centrosymmetric nanodomains in 3D systems as functions of their size and concentration as well as their assembly patterns, i.e., the distributions of tilt, azimuth, and rotation angles with respect to the lab coordinate. We applied the developed method to predict changes in the CH and OH stretch modes characteristic to crystalline cellulose microfibrils distributed with various orders, which are relevant to plant cell wall structures. The same algorithm can also be applied to any SFG-active nanodomains interspersed in 3D amorphous matrices.


Assuntos
Parede Celular , Celulose , Membrana Celular , Parede Celular/química , Celulose/química , Análise Espectral/métodos , Vibração
5.
ChemSusChem ; 6(8): 1445-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897708

RESUMO

We report the superior characteristics of a ZnO buffer layer covered with a phenothiazine-based, π-conjugated donor-acceptor (D-π-A)-type organic dye (called "d-ZnO"). The use of this system for the performance enhancement of inverted bulk heterojunction polymer solar cells (PSCs) with the configuration of indium tin oxide/d-ZnO/polymer:PC71 BM/MoO3 /Ag (PC71 BM=[6,6]-phenyl C71 butyric acid methyl ester) is investigated. The layer of organic dyes anchored on the ZnO surface through carboxylate bonding reduces the shunt path on bare ZnO surface and provides better interfacial contacts and energy level alignments between the ZnO layer and the photoactive layer. This phenomenon consequently leads to highly enhanced photovoltaic parameters (fill factor, open-circuit voltage, and short-circuit current density) and power conversion efficiencies (PCEs). Inverted solar cells containing the d-ZnO layer not only revealed about 34% (PCE: 4.37%) and 18% (PCE: 7.11%) improvement in the PCEs of the representative poly-3(hexylthiophene) (P3HT) and low-band-gap poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-alt-[2-(2'-ethylhexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]} (PBDTTT-C-T) polymer systems, respectively, but also showed 2-4 times longer device lifetimes than their counterparts without the organic dye layer. These results demonstrate that this simple approach used in inverted PSCs with a metal oxide buffer layer could become a promising procedure to fabricate highly efficient and stable PSCs.


Assuntos
Acrilatos/química , Cianoacrilatos/química , Fontes de Energia Elétrica , Fenotiazinas/química , Energia Solar , Óxido de Zinco/química , Soluções Tampão , Eletrodos , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA