Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(13): 7106-15, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27268462

RESUMO

Oxidation by persulfates at elevated temperatures (thermally activated persulfates) disintegrates bacterial cells and extracellular polymeric substances (EPS) composing waste-activated sludge (WAS), facilitating the subsequent sludge dewatering. The WAS disintegration process by thermally activated persulfates exhibited different behaviors depending on the types of persulfates employed, that is, peroxymonosulfate (PMS) versus peroxydisulfate (PDS). The decomposition of PMS in WAS proceeded via a two-phase reaction, an instantaneous decomposition by the direct reaction with the WAS components followed by a gradual thermal decay. During the PMS treatment, the WAS filterability (measured by capillary suction time) increased in the initial stage but rapidly stagnated and even decreased as the reaction proceeded. In contrast, the decomposition of PDS exhibited pseudo first-order decay during the entire reaction, resulting in the greater and steadier increase in the WAS filterability compared to the case of PMS. The treatment by PMS produced a high portion of true colloidal solids (<1 µm) and eluted soluble and bound EPS, which is detrimental to the WAS filterability. However, the observations regarding the dissolved organic carbon, ammonium ions, and volatile suspended solids collectively indicated that the treatment by PMS more effectively disintegrated WAS compared to PDS, leading to higher weight (or volume) reduction by postcentrifugation.


Assuntos
Oxirredução , Esgotos/microbiologia , Polímeros , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA