Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Oral Health ; 24(1): 775, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987748

RESUMO

Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.


Assuntos
Resinas Acrílicas , Antifúngicos , Candida albicans , Vidro , Teste de Materiais , Fosfatos , Estrôncio , Propriedades de Superfície , Candida albicans/efeitos dos fármacos , Resinas Acrílicas/química , Estrôncio/farmacologia , Estrôncio/química , Antifúngicos/farmacologia , Vidro/química , Fosfatos/farmacologia , Polimerização , Dureza , Resistência à Flexão , Humanos , Técnicas In Vitro
2.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401545

RESUMO

Poly(methyl methacralyate) (PMMA) has long been used in dentistry as a base polymer for dentures, and it is recently being used for the 3D printing of dental materials. Despite its many advantages, its susceptibility to microbial colonization remains to be overcome. In this study, the interface between 3D-printed PMMA specimens and oral salivary biofilm was studied following the addition of zwitterionic materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) or sulfobetaine methacrylate (SB). A significant reduction in bacterial and biofilm adhesions was observed following the addition of MPC or SB, owing to their protein-repellent properties, and there were no significant differences between the two test materials. Although the mechanical properties of the tested materials were degraded, the statistical value of the reduction was minimal and all the properties fulfilled the requirements set by the International Standard, ISO 20795-2. Additionally, both the test materials maintained their resistance to biofilm when subjected to hydrothermal fatigue, with no further deterioration of the mechanical properties. Thus, novel 3D-printable PMMA incorporated with MPC or SB shows durable oral salivary biofilm resistance with maintenance of the physical and mechanical properties.


Assuntos
Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Resinas Compostas/química , Materiais Dentários/farmacologia , Boca/efeitos dos fármacos , Polímeros/química , Impressão Tridimensional/instrumentação , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Humanos , Teste de Materiais , Metacrilatos/química , Boca/microbiologia , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/metabolismo
3.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799919

RESUMO

Herein, we investigated the surface characterization and biocompatibility of a denture-lining material containing Cnidium officinale extracts and its antifungal efficacy against Candida albicans. To achieve this, a denture-lining material containing various concentrations of C. officinale extract and a control group without C. officinale extract were prepared. The surface characterization and biocompatibility of the samples were investigated. In addition, the antifungal efficacy of the samples on C. albicans was investigated using spectrophotometric growth and a LIVE/DEAD assay. The results revealed that there was no significant difference between the biocompatibility of the experimental and control groups (p > 0.05). However, there was a significant difference between the antifungal efficiency of the denture material on C. albicans and that of the control group (p < 0.05), which was confirmed by the LIVE/DEAD assay. These results indicate the promising potential of the C. officinale extract-containing denture-lining material as an antifungal dental material.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cnidium/química , Reembasadores de Dentadura , Extratos Vegetais/farmacologia , Antifúngicos/química , Antifúngicos/toxicidade , Linhagem Celular , Cor , Reembasadores de Dentadura/microbiologia , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Propriedades de Superfície
4.
J Oral Maxillofac Surg ; 72(6): 1093.e1-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24709514

RESUMO

PURPOSE: Distant migration associated with sinus lifting procedures has not been investigated. In the present study, a case of distant migration of graft material was observed, and the potential mechanisms of migration were analyzed using material analysis and in vivo experiments. MATERIALS AND METHODS: The migrated graft material was biphasic calcium phosphate-based alloplastic material (BCP), and its physical properties were compared with those of xenogenic material (Bio-Oss). The comparisons of the physical properties were performed using scanning electronic microscopic, x-ray diffraction, and Fourier-transform infrared absorbance spectra analysis. The comparative graft migration study was performed using the subcutaneous pocket model in rats (n = 10). The clinical case was analyzed by histologic section and energy dispersive x-ray (EDX) microanalysis. RESULTS: The observed diffraction patterns from the Bio-Oss revealed characteristic diffractions for the hydroxyapatite phase, and those from the BCP revealed additional diffractions that could be assigned to the tricalcium phosphate phase. In the animal model, the graft migration distances observed in the BCP group were significantly greater than those observed in the Bio-Oss group (P = .012). In the clinical case, the lymphatic vessels of the submandibular gland contained foreign materials that were morphologically similar to those of the maxillary sinus. EDX microanalysis revealed that the particles in the lymphatic vessels exhibited calcium concentrations that were approximately 200 times greater than those in the adjacent glandular tissue. CONCLUSIONS: In the present study, BCP-based sinus grafts had migrated into the submandibular glandular area by way of the lymphatic chain in the presented clinical case.


Assuntos
Substitutos Ósseos/efeitos adversos , Migração de Corpo Estranho/etiologia , Levantamento do Assoalho do Seio Maxilar/efeitos adversos , Animais , Fenômenos Químicos , Tecido Conjuntivo/patologia , Modelos Animais de Doenças , Microanálise por Sonda Eletrônica , Corpos Estranhos/patologia , Tecido de Granulação/patologia , Humanos , Hidroxiapatitas/efeitos adversos , Hidroxiapatitas/química , Linfadenite/etiologia , Vasos Linfáticos/patologia , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Minerais/efeitos adversos , Minerais/química , Tamanho da Partícula , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Estafilocócicas/microbiologia , Tela Subcutânea/microbiologia , Tela Subcutânea/cirurgia , Glândula Submandibular/patologia , Difração de Raios X
5.
J Oral Maxillofac Surg ; 72(1): 53-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24331565

RESUMO

PURPOSE: The objective of this study was to compare peri-implant bone formation among uncoated (UC), hydroxyapatite (HA), collagen plus HA (CH), and collagen, HA, plus bone morphogenetic protein-2 (BMP-2) implant groups. MATERIALS AND METHODS: Implants in the UC group had acid-etched surfaces. The surface coating was applied using the aerosol deposition method. The coated surfaces were examined by scanning electron microscopy, x-ray diffraction (XRD), and Fourier-transformed infrared absorption analysis. Subsequently, 6 implants from each group (total, 24 implants) were installed in the tibias of rabbits. The animals were sacrificed at 6 weeks after implant installation. Peri-implant bone formation and bone-to-implant contact (BIC) were measured in histologic sections. Significant differences among groups were evaluated using analysis of variance. RESULTS: Based on the measured XRD patterns, there was a characteristic HA phase (International Centre for Diffraction Data [ICDD], 086-0740) coated on the titanium (ICDD, 089-3725). Subsequent coating processes for collagen and BMP-2 did not display additional diffraction peaks, but maintained the diffraction patterns of the HA-coated titanium. The presence of collagen was verified by infrared absorption analysis. When comparing these modifications with UC surfaces, only the CH coating displayed significantly greater peri-implant bone formation and BIC (P = .003 and P < .001, respectively). Adding BMP-2 to the implant surface did not produce any advantage compared with the CH coating. CONCLUSIONS: In this study, the CH group displayed significantly greater new bone formation and BIC than the other groups. There was no significant difference among the other groups.


Assuntos
Proteína Morfogenética Óssea 2/química , Materiais Revestidos Biocompatíveis/química , Colágeno Tipo I/química , Implantes Dentários , Planejamento de Prótese Dentária , Durapatita/química , Osteogênese/fisiologia , Condicionamento Ácido do Dente/métodos , Aerossóis , Animais , Materiais Dentários/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Osseointegração/fisiologia , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Tíbia/patologia , Tíbia/cirurgia , Titânio/química , Difração de Raios X
6.
Int J Syst Evol Microbiol ; 63(Pt 4): 1311-1316, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22798648

RESUMO

Two strains of gram-negative, catalase- and oxidase-positive, coccus-shaped bacteria, designated NB88(T) and LNB004, were isolated from activated sludge in the Mae-san sewage treatment plant in South Korea. They were characterized in a polyphasic taxonomic study based on phenotypic, phylogenetic and genotypic approaches. Comparative 16S rRNA gene sequence analysis indicated that strains NB88(T) and LNB004 represented a novel subline within the genus Paracoccus in the family Rhodobacteraceae. According to 16S rRNA gene sequence comparisons, strains NB88(T) and LNB004 were indistinguishable and showed 94.5-97.6 % similarity to the type strains of other Paracoccus species. Strain NB88(T) exhibited relatively high levels of DNA hybridization (84±3.5 %) with LNB004 and low hybridization values (<40 %) with type strains of other Paracoccus species. Both strains showed chemotaxonomic characteristics typical of the genus Paracoccus, with Q-10 as the predominant respiratory quinone and C18 : 1ω7c as the major fatty acid, and both strains accumulated poly-ß-hydroxybutyrate granules. The DNA G+C contents of strains NB88(T) and LNB004 were 66.4 and 65.1 mol%, respectively. The polar lipid profiles of strains NB88(T) and LNB004 included major amounts of phosphatidylglycerol, phosphatidylcholine and an unknown aminolipid. The taxonomic position of strains NB88(T) and LNB004 was clarified by the low level of DNA-DNA hybridization with closely related strains and the strains could be distinguished from other recognized species by using biochemical tests and molecular genetic analysis. On the basis of their phenotypic and genotypic properties and their phylogenetic distinctiveness, strains NB88(T) and LNB004 should be classified in a novel species of the genus Paracoccus, for which the name Paracoccus limosus sp. nov. is proposed. The type strain is NB88(T) ( = KEMC 5401-184(T)  = JCM 17370(T)); strain LNB004 ( = KEMC 5401-001) is a reference strain.


Assuntos
Paracoccus/classificação , Filogenia , Esgotos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Hidroxibutiratos/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paracoccus/genética , Paracoccus/isolamento & purificação , Poliésteres/metabolismo , Quinonas/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
7.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679178

RESUMO

Poly (methyl methacrylate) (PMMA) is a commonly used denture material with poor antimicrobial effects. This study investigated the antimicrobial effects of PMMA-containing silver-phosphate glass. We fabricated a novel material comprising PMMA-containing silver-phosphate glass. Then, microhardness, flexural strength, and gloss unit were analyzed. Antimicrobial activity against Streptococcus mutans and Candida albicans was investigated. Colony-forming units were counted, and antimicrobial rates were measured. Biocompatibility tests were performed using a colorimetric MTT assay for evaluating cell metabolic activity. The microhardness, flexural strength, and gloss unit of the experimental groups (with silver-phosphate glass) were not significantly different from those of the control group (no silver-phosphate glass) (P > 0.05), which showed clinically valid values. With increasing proportions of silver-phosphate glass, the antimicrobial activity against the two microorganisms increased (P < 0.05). Furthermore, S. mutans showed more than 50% antimicrobial activity in 4%, 6%, and 8% experimental groups, C. albicans showed more than 50% antimicrobial activity in 6% and 8% groups, and a statistically significant difference in antimicrobial activity was observed compared to the control (P < 0.05). The cell viability of the experimental groups was not significantly different from that of the control group (P > 0.05). Both control and experimental groups showed approximately 100% cell viability. These results suggest that silver-phosphate glass is a promising antimicrobial material in dentistry.

8.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445067

RESUMO

The biomechanical effects of dental tissue according to various dental crown materials were investigated using finite element analysis. Bone, prepared tooth, root canal, and periodontal ligament were modeled based on computed tomography. Depending on the characteristics of the crown material, it was classified into zirconia, hybrid ceramic, gold alloy, and acrylic resin. A loading force of 200 N was applied in the vertical direction to the occlusal surface of the crown, and analysis was performed under the condition that all interfaces were tied. The results demonstrate that the highest von Mises stress was shown in the prepared tooth of the acrylic resin model, which is a temporary prosthesis, and the pulpal pressure was also the highest. Additionally, among the final prosthesis, the highest stress was shown in the hybrid ceramic model prepared teeth. The properties of restoration materials can be a factor influencing the tooth structure. Thus, in order to make a correct decision when selecting a material for restorative treatment, it is necessary to understand, analyze, and evaluate the properties of these restoration materials.

9.
Dent Mater J ; 42(6): 844-850, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37914231

RESUMO

This study aimed to investigate the effects of electrical energy and its synergistic activity with graphene oxide (GO) in Enterococcus faecalis (E. faecalis) biofilms. The viability of E. faecalis biofilms was analyzed by colony-forming units, crystal violet staining, and confocal laser scanning microscopy. The morphologies of the biofilms and the bacterial organelles were observed by scanning electron microscopy and transmission emission microscopy (TEM), respectively. Application of electrical energy combined with 0.2% sodium hypochlorite (NaOCl) on E. faecalis in biofilms significantly decreased the bacterial viability and biofilm biomass compared to the 0.2% NaOCl-only-treated group. Furthermore, additional application of GO showed similar antibacterial effects to 0.5% NaOCl. Notably, TEM observation revealed that the bacteria treated with electric energy and GO showed damaged cell membranes. The results suggest that combination of electrical energy and GO enhances antibacterial activity of NaOCl and has the potential to be applied to root canal irrigation protocols.


Assuntos
Enterococcus faecalis , Irrigantes do Canal Radicular , Irrigantes do Canal Radicular/farmacologia , Biofilmes , Microscopia Confocal , Hipoclorito de Sódio/farmacologia , Antibacterianos/farmacologia , Cavidade Pulpar
10.
Front Physiol ; 14: 1313927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148896

RESUMO

Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.

11.
Sci Rep ; 13(1): 17763, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853055

RESUMO

Dental composite resins are widely used in dental restorations. However, their clinical application is limited by the occurrence of secondary caries. Strontium-modified phosphate-based glass (Sr-PBG) is a material known to have a sustainable bacterial resistance effect. The mechanical properties (in particular, flexural strength, modulus of elasticity, and hardness) of dental materials determine their function. Therefore, this study aimed to investigate the mechanical and ion-releasing properties as well as the sustainable bacterial resistance effect of bioactive resin composites containing Sr-PBG. The data were analyzed by ANOVA and Tuckey's tests (p < 0.05). We incorporated a Sr-PBG microfiller at 3, 6, and 9 wt.% concentrations into a commercially available composite resin and investigated the mechanical properties (flexural strength, elastic modulus, and micro hardness), ion release characteristics, and color of the resultant resins. In addition, we examined the antibacterial effects of the composite resins against Streptococcus mutans (S. mutans). The mechanical properties of the Sr-PBG groups differed only slightly from those of the control group (p > 0.05). However, the optical density at 600 nm of S. mutans incubated on the experimental group was significantly lower compared to that observed with the control (p < 0.05) both before and after thermocycling between 5 and 55 â„ƒ for 850 cycles (dwell time: 45 s). Therefore, strontium-modified resin materials exhibited a sustainable bacterial resistance effect in vitro while maintaining some of the mechanical properties of ordinary acrylic resins.


Assuntos
Resinas Compostas , Metacrilatos , Teste de Materiais , Vidro , Elasticidade , Propriedades de Superfície
12.
J Dent ; 137: 104689, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666468

RESUMO

OBJECTIVES: This study aimed at demonstrating the remineralization effect of the enamel around the brackets to aid reduction in white spot lesions (WSLs) with use of zinc-doped phosphate-based glass (Zn-PBG) containing orthodontic adhesives. METHODS: Zn-PBG powder was synthesized, and particle morphology, size, and density were evaluated. Orthodontic adhesives with increasing loading percentage of Zn-PBG powder were prepared: ZnPG3 (3 wt.%), ZnPG6 (6 wt.%), and ZnPG9 (9 wt.%). Brackets were bonded on the etched enamel surface and stored in distilled water (DW) for 1 h. Following, Shear bond strength (SBS) along with adhesive remnant index were analyzed. The release of calcium (Ca), phosphorus (P), and zinc (Zn) from adhesive specimens in DW was evaluated after 7, 15 and 30 days of immersion. The remineralization effect was confirmed by microhardness and surface morphology analysis with scanning electron microscopy. RESULTS: The SBS value was observed between 20 and 22 MPa on enamel surface. The concentration of Ca, P and Zn released in DW increased with loading percentage of Zn-PBG. The microhardness increased in the experimental groups after immersion in artificial saliva for 7 days. Apatite-like crystal formation was observed after 30 days in the ZnPG 9 group. CONCLUSIONS: The orthodontic adhesive containing Zn-PBG with an optimal SBS performance has an enamel remineralization effect, and therefore can aid in prevention of WSLs. CLINICAL SIGNIFICANCE: The orthodontic adhesive containing Zn-PBG is clinically advantageous as it can promote remineralization and resist the formation of WSLs that may occur during orthodontic therapy.


Assuntos
Cárie Dentária , Cimentos Dentários , Humanos , Pós , Fosfatos , Cálcio
13.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080085

RESUMO

This study investigated the surface properties, biocompatibility, and antifungal activity against Candida albicans of a denture-relining material coated with zinc-bound phosphate-based glass. First, zinc-bound phosphate-based glass was fabricated. A polymerized denture-relining disk was coated with zinc-bound phosphate-based glass (2%, 4%, and 6%). The surface properties of the control and experimental groups were measured, including the wettability, microhardness, color difference, and gloss. The biocompatibility was evaluated using the MTT assay according to ISO 10993-5. The antifungal activity was investigated by counting the number of colony-forming units of Candida albicans. The results were analyzed using a one-way ANOVA and Tukey's test (p = 0.05). The results of this study indicate that, despite the antimicrobial effect of zinc-bound phosphate-based glass, a coated denture-relining material does not degrade the surface properties and biocompatibility. Therefore, this novel material is considered promising for use as a dental material with antimicrobial properties that can potentially prevent denture stomatitis.

14.
Sci Rep ; 12(1): 19456, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376540

RESUMO

Colonization of auto-polymerized acrylic resin by pathogenic Candida albicans is a common problem for denture users. In this study, zinc-modified phosphate-based glass was introduced into an auto-polymerized acrylic resin at concentrations of 3, 5, and 7 wt.%. The mechanical or physical properties (flexural strength, elastic modulus, microhardness, and contact angle), surface morphology of the resultant materials, and the antimicrobial effect on C. albicans were investigated. There were no statistical differences in the mechanical properties between the control and the zinc-modified phosphate-based glass samples (p > 0.05); however, the number of C. albicans colony-forming units was significantly lower in the control group (p < 0.05). Scanning electron microscopy revealed that C. albicans tended not to adhere to the zinc-modified-phosphate-based glass samples. Thus, the zinc-modified materials retained the advantageous mechanical properties of unaltered acrylic resins, while simultaneously exhibiting a strong antimicrobial effect in vitro.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Resinas Acrílicas/farmacologia , Candida albicans , Bases de Dentadura , Propriedades de Superfície , Teste de Materiais , Fosfatos/farmacologia , Zinco/farmacologia
15.
Materials (Basel) ; 14(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443077

RESUMO

The aim of this study is to investigate the resistance of various fluoride-releasing restorative materials against the demineralization and remineralization of enamel surfaces, including those that have been recently introduced to the market. Three different fluoride-releasing restorative materials were considered: glass ionomer (FI), resin-modified glass ionomer (RL), and an alkasite restorative material (CN). The acid neutralization ability was investigated using pH measurement, and the concentrations of released fluoride and calcium ions were measured. Finally, the demineralization resistance and remineralization effects of enamel were observed using a microhardness tester and SEM. CN showed an initial substantial increase in pH followed by a steady increase, with values higher than those of the other groups (p < 0.05). All three groups released fluoride ions, and the CN group released more calcium ions than the other groups (p < 0.05). In the acid resistance test, from the microhardness and SEM images, the CN group showed effective resistance to demineralization. In the remineralization test, the microhardness results showed that the FI and CN groups recovered the microhardness from the values of the demineralized enamel surface (p < 0.05). This was confirmed by the SEM images from remineralization tests; the CN group showed a recovered demineralized surface when immersed in artificial saliva for 7 days. In conclusion, alkasite restorative material can be an effective material when used in cariogenic environments.

16.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759809

RESUMO

This study analyzed the antimicrobial, cytotoxic, and antioxidant properties of Cnidiumofficinale (CO) extracts to confirm their antimicrobial activity toward oral microorganisms. The control group contained 0 µg/mL of CO, and the experimental groups contained 50, 100, 150, and 200 µg/mL of CO. To confirm the antibacterial activity of CO extracts against microorganisms in the oral cavity, an inhibition zone test, a colony-forming unit (CFU) analysis, an optical density (OD) evaluation, and a SEM (scanning electron microscopy) analysis were performed. A cytotoxicity test was also conducted to determine cell viability, and the contents of flavonoids and polyphenols were measured to analyze the extract components. In the control group, the growth inhibition zone increased, while the CFU and OD values decreased (p < 0.05). The SEM analysis confirmed that the number of microorganisms for both the microbes decreased. The cell viability was more than 80% in both the control and experimental groups, excluding the 200 µg/mL sample. The flavonoid and polyphenol contents in the experimental groups showed higher values than those of the control group. Therefore, the CO extract showed considerable antimicrobial activity toward both Streptococcus mutans and Candida albicans, suggesting that it may be used as a natural antimicrobial agent for dental applications.

17.
Materials (Basel) ; 13(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941105

RESUMO

Despite the many advantages of poly (methyl methacrylate) (PMMA) as a dental polymer, its antifungal and antibacterial effects remain limited. Here, phytoncide was incorporated into PMMA to inhibit fungal and biofilm accumulation without impairing the basic and biological properties of PMMA. A variable amount of phytoncide (0 wt % to 5 wt %) was incorporated into PMMA, and the basic material properties of microhardness, flexural strength and gloss were evaluated. In addition, cell viability was confirmed by MTT assay. This MTT assay measures cell viability via metabolic activity, and the color intensity of the formazan correlates viable cells. The fungal adhesion and viability on the PMMA surfaces were evaluated using Candida albicans (a pathogenic yeast). Finally, the thickness of saliva-derived biofilm was estimated. The flexural strength of PMMA decreased with increasing phytoncide contents, whereas there were no significant differences in the microhardness and gloss (p > 0.05) and the cell viability (p > 0.05) between the control and the phytoncide-incorporated PMMA samples. The amounts of adherent Candida albicans colony-forming unit (CFU) counts, and saliva-derived biofilm thickness were significantly lower in the phytoncide-incorporated PMMA compared to the control (p < 0.05). Hence, it was concluded that the incorporation of appropriate amounts of phytoncide in PMMA demonstrated antifungal effects while maintaining the properties, which could be a possible use in dentistry application such as denture base resin.

18.
Plants (Basel) ; 9(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635264

RESUMO

We aimed to evaluate the antimicrobial effects of Glycyrrhiza uralensis extract on Streptococcus mutans and Candida albicans and its biocompatibility for dental applications. The antimicrobial activity of the G. uralensis extracts at concentrations of 50, 100, 150, and 200 µg/mL was assessed using agar disk diffusion tests, counting the total number of colony-forming units (CFUs), spectrophotometric growth inhibitory assays, and microbial morphology observations using scanning electron microscopy (SEM; Merin, Carl Zeiss, Oberkochen, Germany). We measured the polyphenol and flavonoid contents of G. uralensis extracts using ultraviolet-visible spectrometry and the cytotoxicity of these extracts using an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. We identified that G. uralensis extracts had significant antimicrobial effects against S. mutans and C. albicans. The optical density of the experimental groups significantly decreased compared with that of the control group. SEM images revealed that the G. uralensis extract affected the morphology and density of S. mutans and C. albicans. The extract concentration of flavonoids, but not polyphenols, increased with increasing concentrations of the G. uralensis extract. Furthermore, cell viabilities were more than 70% for G. uralensis extracts with concentrations of 50 and 100 µg/mL. Naturally derived G. uralensis is biocompatible and exhibits an excellent antimicrobial effect against oral pathogens such as S. mutans and C. albicans. Thus, G. uralensis extracts can be used for the development of oral products that treat and prevent oral diseases.

19.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806515

RESUMO

Since pits and fissures are the areas most commonly affected by caries due to their structural irregularity, bioactive resin-based sealant (RBS) may contribute to the prevention of secondary caries. This study aims to investigate the mechanical, physical, ion-release, enamel remineralisation, and antibacterial capabilities of the novel RBS with bioactive glass (BAG) and 2-methacryloyloxyethyl phosphorylcholine (MPC). For the synthesis, 12.5 wt% BAG and 3 wt% MPC were incorporated into RBS. The contact angle, flexural strength, water sorption, solubility, and viscosity were investigated. The release of multiple ions relating to enamel remineralisation was investigated. Further, the attachments of bovine serum albumin, brain heart infusion broth, and Streptococcus mutans on RBS were studied. Finally, the thickness and biomass of a human saliva-derived microsm biofilm model were analysed before aging, with static immersion aging and with thermocycling aging. In comparison to commercial RBS, BAG+MPC increased the wettability, water sorption, solubility, viscosity, and release of multiple ions, while the flexural strength did not significantly differ. Furthermore, RBS with MPC and BAG+MPC significantly reduced protein and bacteria adhesion and suppressed multi-species biofilm attachment regardless of the existence of aging and its type. The novel RBS has great potential to facilitate enamel remineralisation and suppress biofilm adhesion, which could prevent secondary dental caries.

20.
Polymers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751729

RESUMO

Prevention of dental caries is a key research area, and improvement of the pit and fissure sealants used for caries prevention has been of particular interest. This report describes results of incorporating a zwitterion, sulfobetaine methacrylate (SB), into photo-polymerized resin-based sealants to enhance resistance to cariogenic bacteria and protein adhesion. Varying amounts (1.5-5 wt%) of SB were incorporated into a resin-based sealant, and the flexural strength, wettability, depth of cure, protein adhesion, bacterial viability, and cell cytotoxicity of the resultant sealants were evaluated. The flexural strength decreased with the increasing SB content, but this decrease was statistically significant only for sealants containing ≥3 wt% SB. Incorporating a zwitterion led to a significant reduction in the water contact angle and protein adhesion. The colony-forming unit count showed a significant reduction in the bacterial viability of S. mutans, which was confirmed with microscopic imaging. Moreover, cell cytotoxicity analysis of SB-modified sealants using an L929 fibroblast showed a cytotoxicity comparable to that of an unmodified control, suggesting no adverse effects on the cellular metabolism upon SB introduction. Hence, we conclude that the addition of 1.5-3 wt% SB can significantly enhance the inherent ability of sealants to resist S. mutans adhesion and prevent dental caries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA