Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 28(6): 711-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25625820

RESUMO

The glutamic acid at position 100 (E(100)) in the capsid protein (CP) of Odontoglossum ringspot virus (ORSV) plays an important role in long-distance viral movement in Nicotiana benthamiana. The ORSV(E100A) mutant, which has a glutamic acid to alanine substitution, shows a loss of systemic infectivity in N. benthamiana. Transmission electron microscopy and size-exclusion chromatography assays showed that E(100) is essential for CP-CP interaction and viral particle assembly. To identify the ORSV triggering or response genes and CP-interacting proteins (CP-IP), an integrated omics approach based on next-generation sequencing and proteomics profiling was used in this study. The whole-transcriptomes of healthy and ORSV-infected leaves of N. benthamiana were analyzed, and the gene information was used to create a N. benthamiana protein database that was used for protein identification following mass spectrometry analysis. The integrated omics approach identified several putative host proteins that interact with ORSV CP(WT) and were categorized as photosystem subunits, defense-associated proteins, and cell division components. The expression pattern and CP interaction of these CP-IP were examined by semiquantitative reverse transcription polymerase chain reaction and an in vitro binding assay, respectively, to verify the in silico data. Among these proteins, a proteinase inhibitor of N. benthamiana (NbPI2) was highly associated with CP(E100A) as compared with CP(WT), and NbPI1 and NbPI2 were highly induced in ORSV-infected plants. NbPI1- and NbPI2-silenced plants (via a Tobacco rattle virus-induced gene-silencing system) did not exhibit a difference in ORSV infection. Thus, whether NbPI1 and NbPI2 play a role in plant immunity requires further investigation. In summary, the integrated omics approach provides massive and valuable information to identify the ORSV CP-IP and these CP-IP will help us to understand the movement of this virus and plant-virus interaction.


Assuntos
Proteínas do Capsídeo/metabolismo , Biologia Computacional , Nicotiana/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Tobamovirus/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Genômica , Ácido Glutâmico , Modelos Moleculares , Dados de Sequência Molecular , Imunidade Vegetal , Folhas de Planta/virologia , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Análise de Sequência de DNA , Nicotiana/metabolismo , Nicotiana/virologia , Tobamovirus/genética , Transcriptoma
2.
Viruses ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34452417

RESUMO

Synergistic interactions among viruses, hosts and/or transmission vectors during mixed infection can alter viral titers, symptom severity or host range. Viral suppressors of RNA silencing (VSRs) are considered one of such factors contributing to synergistic responses. Odontoglossum ringspot virus (ORSV) and cymbidium mosaic virus (CymMV), which are two of the most significant orchid viruses, exhibit synergistic symptom intensification in Phalaenopsis orchids with unilaterally enhanced CymMV movement by ORSV. In order to reveal the underlying mechanisms, we generated infectious cDNA clones of ORSV and CymMV isolated from Phalaenopsis that exerted similar unilateral synergism in both Phalaenopsis orchid and Nicotiana benthamiana. Moreover, we show that the ORSV replicase P126 is a VSR. Mutagenesis analysis revealed that mutation of the methionine in the carboxyl terminus of ORSV P126 abolished ORSV replication even though some P126 mutants preserved VSR activity, indicating that the VSR function of P126 alone is not sufficient for viral replication. Thus, P126 functions in both ORSV replication and as a VSR. Furthermore, P126 expression enhanced cell-to-cell movement and viral titers of CymMV in infected Phalaenopsis flowers and N. benthamiana leaves. Taking together, both the VSR and protein function of P126 might be prerequisites for unilaterally enhancing CymMV cell-to-cell movement by ORSV.


Assuntos
Coinfecção/virologia , Orchidaceae/virologia , Células Vegetais/virologia , Potexvirus/metabolismo , Tobamovirus/metabolismo , Proteínas do Capsídeo/genética , Sinergismo Farmacológico , Interações Microbianas , Potexvirus/genética , Interferência de RNA , RNA Viral/genética , Nicotiana/virologia , Tobamovirus/genética , Replicação Viral
3.
Mol Plant Pathol ; 22(6): 627-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749125

RESUMO

The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.


Assuntos
Proteínas Argonautas/metabolismo , Resistência à Doença/genética , Orchidaceae/genética , Doenças das Plantas/imunologia , Potexvirus/fisiologia , Tobamovirus/fisiologia , Proteínas Argonautas/genética , Orchidaceae/imunologia , Orchidaceae/virologia , Melhoramento Vegetal , Doenças das Plantas/virologia , Potexvirus/genética , Interferência de RNA
4.
Sci Rep ; 9(1): 10230, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308424

RESUMO

Taxonomically distinct Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) are two of the most prevalent viruses worldwide; when co-infecting orchids, they cause synergistic symptoms. Because of the huge economic loss in quality and quantity in the orchid industry with virus-infected orchids, virus-resistant orchids are urgently needed. To date, no transgenic resistant lines against these two viruses have been reported. In this study, we generated transgenic Nicotiana benthamiana expressing various constructs of partial CymMV and ORSV genomes. Several transgenic lines grew normally and remained symptomless after mixed inoculation with CymMV and ORSV. The replication of CymMV and ORSV was approximately 70-90% lower in protoplasts of transgenic lines than wild-type (WT) plants. Of note, we detected extremely low or no viral RNA or capsid protein of CymMV and ORSV in systemic leaves of transgenic lines after co-infection. Grafting experiments further revealed that CymMV and ORSV trafficked extremely inefficiently from co-infected WT stocks to transgenic scions, presumably due to RNA-mediated interference. This study reports the first successful creation of dual resistant transgenic lines against CymMV and ORSV. Our studies shed light on the commercial development of transgenic orchid production to combat the global viral threat.


Assuntos
Nicotiana/genética , Potexvirus/genética , Tobamovirus/genética , Proteínas do Capsídeo/genética , Primers do DNA/genética , Engenharia Genética/métodos , Orchidaceae/genética , Orchidaceae/virologia , Plantas Geneticamente Modificadas/genética , Potexvirus/patogenicidade , Protoplastos , Interferência de RNA , RNA Viral/genética , Tobamovirus/patogenicidade , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA