Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(11): 6987-6996, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374590

RESUMO

Recently, various attempts have been made to solve plastic waste problems, such as development of biodegradation without producing pollution. Polystyrene (PS) is the fifth most used plastic in many industries; therefore, degrading PS becomes a critical global issue. Here, we reported Pseudomonas aeruginosa strain DSM 50071, initially isolated from the gut of the superworms, Zophobas atratus, and the PS degradation by Pseudomonas sp. DSM 50071. We examined PS degradation using electronic microscopy and measured changes in atomic composition and contact angles with water droplets on the PS surface that represents a chemical change from hydrophobicity to hydrophilicity. We have further examined chemical structural changes using X-ray photoelectron spectroscopy, Fourier-transform-infrared spectroscopy, and nuclear magnetic resonance (NMR) to confirm the formation of carbonyl groups (C═O) in the oxidation pathway during PS biodegradation. In reverse transcription quantitative polymerase chain reaction analysis, the gene expression level of serine hydrolase (SH) in Pseudomonas sp. DSM 50071 was highly increased during PS degradation, and the enzyme-mediated biodegradation of PS was further confirmed by the SH inhibitor treatment test. Thus, the significance of these findings goes beyond the discovery of a novel function of Pseudomonas sp. DSM 50071 in the gut of superworms, highlighting a potential solution for PS biodegradation.


Assuntos
Besouros , Microbioma Gastrointestinal , Animais , Biodegradação Ambiental , Larva , Poliestirenos , Pseudomonas/genética
2.
Sci Total Environ ; 929: 172775, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670383

RESUMO

Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.


Assuntos
Bactérias , Microbioma Gastrointestinal , Plásticos , Humanos , Bactérias/metabolismo , Plásticos/metabolismo , Fezes/microbiologia , Biodegradação Ambiental , Microplásticos/metabolismo , Poluentes Ambientais/metabolismo
3.
Sci Total Environ ; 720: 137616, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146401

RESUMO

Pseudomonas sp. isolated from soil, are bioremediating microorganisms that are capable of degrading various types of plastics. Polyphenylene sulfide (PPS) has the most excellent structural stability among general plastics and thus is extremely difficult to break down using physical or chemical methods. This study demonstrates the efficient biodegradation of PPS by Pseudomonas sp., which exists in the gut of superworms. Compared with the conventional film-type of plastic, the degradation efficiencies to the bead form of plastic were significantly improved and thus the biodegradation time was dramatically shortened. Therefore, instead of film-type plastics, we used 300 µm diameter plastic beads for the measurement of Pseudomonas sp.-mediated biodegradation of PPS during a 10-day period. This method not only can be used for comparison and verification of the biodegradation efficiency of different types of plastics within a short reaction time of 10 days, but also provides the possibility to develop a new and more efficient screening system to rapidly identify the most efficient species of bacteria for the biodegradation of various types of plastics.


Assuntos
Pseudomonas , Biodegradação Ambiental , Plásticos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA