Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544014

RESUMO

This study investigates the characteristics of a novel origami-based, elastomeric actuator and a soft gripper, which are controlled by hand gestures that are recognized through machine learning algorithms. The lightweight paper-elastomer structure employed in this research exhibits distinct actuation features in four key areas: (1) It requires approximately 20% less pressure for the same bending amplitude compared to pneumatic network actuators (Pneu-Net) of equivalent weight, and even less pressure compared to other actuators with non-linear bending behavior; (2) The control of the device is examined by validating the relationship between pressure and the bending angle, as well as the interaction force and pressure at a fixed bending angle; (3) A soft robotic gripper comprising three actuators is designed. Enveloping and pinch grasping experiments are conducted on various shapes, which demonstrate the gripper's potential in handling a wide range of objects for numerous applications; and (4) A gesture recognition algorithm is developed to control the gripper using electromyogram (EMG) signals from the user's muscles.


Assuntos
Algoritmos , Elastômeros , Eletromiografia , Gestos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA