Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Oral Dis ; 29(4): 1644-1656, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35199415

RESUMO

OBJECTIVES: This study aimed to identify formation of tubular dentin induced by transforming growth factor-ß (TGF-ß) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS: We collected conditioned medium (CM) of rTGF-ß1/rBMP-2-treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and Western blot analysis. To evaluate whether CM of rTGF-ß1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS: Here, we show that Cpne7 is regulated by Smad4-dependent TGF-ß1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-ß1/rBMP-2 treated HAT-7 or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-ß1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-ß1/BMP2-treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-ß1 group exhibited homogenous osteodentin. CONCLUSIONS: Taken together, Smad4-dependent TGF-ß1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.


Assuntos
Proteínas da Matriz Extracelular , Fator de Crescimento Transformador beta1 , Cães , Animais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Sialoglicoproteínas/genética , Fosfoproteínas/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Odontoblastos , Transdução de Sinais , Células Epiteliais/metabolismo , Diferenciação Celular , Dentina/metabolismo
2.
Connect Tissue Res ; 60(5): 419-430, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30734591

RESUMO

Introduction: Preameloblast-conditioned medium (PA-CM), as a mixture of dental epithelium-derived factors, has been reported to regenerate dentin and periodontal tissues in vitro and in vivo. The aim of this study was to investigate the biological effect of Cpne7 on the proliferation, migration, and cementoblast differentiation of periodontal cells in vitro, and on the regeneration of periodontal tissue using periodontal defect model with canine in vivo. Materials and methods: The effect of Cpne7 on cell proliferation, migration, and cementoblast differentiation of periodontal cells were evaluated in vitro. A periodontal defect canine model was designed and the defects were divided into five groups: Group 1: No treatment (negative control), Group 2: Collagen carrier only, Group 3: PA-CM with collagen carrier (positive control), Group 4: PA-CM + CPNE7 Antibody (Ab) with collagen carrier, and Group 5: recombinant CPNE7 (rCPNE7) protein with collagen carrier. Results: Cpne7 was expressed in HERS cells and periodontal ligament (PDL) fibers. By real-time PCR, Cpne7 increased expression of Cap compared to the control. In the periodontal defect canine model, rCPNE7 or PA-CM regenerated periodontal complex, and the arrangement of the newly formed PDL-like fibers were perpendicular to the newly formed cementum and alveolar bone like Sharpey's fibers in natural teeth, while PA-CM + CPNE7 Ab showed irregular arrangement of the newly formed PDL-like fibers compared to the rCPNE7 or PA-CM group. Conclusion: These findings suggest that Cpne7 may have a functional role in periodontal regeneration by supporting periodontal cell attachment to cementum and facilitating physiological arrangement of PDL fibers.


Assuntos
Proteínas de Membrana/metabolismo , Periodonto/fisiologia , Regeneração , Adolescente , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cementogênese/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Cães , Humanos , Camundongos , Periodonto/citologia , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Dente/crescimento & desenvolvimento , Dente/metabolismo , Adulto Jovem
3.
Aging Cell ; 23(3): e14061, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38105557

RESUMO

Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.


Assuntos
Senilidade Prematura , Camundongos , Animais , Polpa Dentária , Senescência Celular/genética , Odontoblastos , Diferenciação Celular/genética , Camundongos Transgênicos
4.
Front Physiol ; 14: 1313927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148896

RESUMO

Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.

5.
Dig Dis ; 30(6): 568-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23258096

RESUMO

OBJECTIVES: The aim of this study was to examine whether interferon-α (IFN-α) therapy may reduce the occurrence of hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) and to determine its effect based on responsiveness to IFN-α therapy. METHODS: A total of 641 biopsy-proven CHB patients were treated with IFN-α2b. They were followed by biochemistry and/or imaging studies at 3- to 6-month intervals for a median period of 113 months (range 6-222). RESULTS: HCC was detected in 22 patients and 5- and 10-year cumulative occurrence rates were 0.4 and 3.2%, respectively. In univariate analysis, age (p < 0.001), serum AFP levels (p < 0.001), and serum HBV-DNA levels (p = 0.002) at baseline were associated with HCC development. HCC occurred less frequently in biochemical responders at the end of treatment than in non-responders (p = 0.001). However, virologic response was not associated with HCC development. Multivariate analysis showed that poor biochemical response (p = 0.007) as well as older age (p = 0.018) and a higher serum AFP level (p < 0.001) remained independent predisposing factors of HCC development in CHB patients treated with IFN-α. CONCLUSION: The results suggest that the biochemical but not virologic response to IFN-α therapy reduces independently the occurrence of HCC in patients with CHB.


Assuntos
Antivirais/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , DNA Viral/sangue , Hepatite B Crônica/tratamento farmacológico , Interferon-alfa/uso terapêutico , Neoplasias Hepáticas/prevenção & controle , Polietilenoglicóis/uso terapêutico , alfa-Fetoproteínas/metabolismo , Adolescente , Adulto , Fatores Etários , Carcinoma Hepatocelular/virologia , Feminino , Seguimentos , Hepatite B Crônica/sangue , Hepatite B Crônica/complicações , Humanos , Interferon alfa-2 , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento , Adulto Jovem
6.
Front Cell Dev Biol ; 9: 655498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981704

RESUMO

Dentin, which composes most of the tooth structure, is formed by odontoblasts, long-lived post-mitotic cells maintained throughout the entire life of the tooth. In mature odontoblasts, however, cellular activity is significantly weakened. Therefore, it is important to augment the cellular activity of mature odontoblasts to regenerate physiological dentin; however, no molecule regulating the cellular activity of mature odontoblasts has yet been identified. Here, we suggest that copine-7 (CPNE7) can reactivate the lost functions of mature odontoblasts by inducing autophagy. CPNE7 was observed to elevate the expression of microtubule-associated protein light chain 3-II (LC3-II), an autophagy marker, and autophagosome formation in the pre-odontoblast and mature odontoblast stages of human dental pulp cells. CPNE7-induced autophagy upregulated DSP and DMP-1, odontoblast differentiation and mineralization markers, and augmented dentin formation in mature odontoblasts. Furthermore, CPNE7 also upregulated NESTIN and TAU, which are expressed in the physiological odontoblast process, and stimulated the elongation of the odontoblast process by inducing autophagy. Moreover, lipofuscin, which progressively accumulates in long-lived post-mitotic cells and hinders their proper functions, was observed to be removed in recombinant CPNE7-treated mature odontoblasts. Thus, CPNE7-induced autophagy reactivated the function of mature odontoblasts and promoted the formation of physiological dentin in vivo. On the other hand, the well-known autophagy inducer, rapamycin, promoted odontoblast differentiation in pre-odontoblasts but did not properly reactivate the function of mature odontoblasts. These findings provide evidence that CPNE7 functionally reactivates mature odontoblasts and introduce its potential for dentinal loss-targeted clinical applications.

7.
Materials (Basel) ; 13(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081300

RESUMO

We aim to examine the effects of a newly developed peptide derived from CPNE7 (Cpne7-DP) in tertiary dentin formation and peritubular space occlusion, and comprehensively evaluate its potential as a bioactive therapeutic agent. Human dental pulp cells (HDPCs) and a mouse pre-odontoblast cell line, MDPC-23, were chosen for in vitro studies to characterize lineage-specific cell responses after Cpne7-DP treatment. Whether Cpne7-DP reproduces the dentin regenerative potential of CPNE7 was tested using a beagle dog model by generating dentinal defects of various degrees in vivo. Peritubular space occlusion was further examined by scanning electron microscopy and microleakage test, while overall mineralization capacity of Cpne7-DP was tested ex vivo. CPNE7 promotes tubular dentin formation under both shallow and deep dentinal defects, and the functional peptide Cpne7-DP induces odontoblast-like differentiation in vitro, mineralization ex vivo, and tubular dentin formation in in vivo beagle dog dentin exposure and pulp exposure models. Moreover, Cpne7-DP leads to peritubular space occlusion and maintains stability under different conditions. We show that CPNE7 and its derivative functional peptide Cpne7-DP promotes dentin regeneration in dentinal defects of various degrees and that the regenerated hard tissue demonstrates the characteristics of true dentin. Limitations of the current dental materials including post-operative hypersensitivity make biological repair of dentin a field of growing interest. Here, we suggest that the dual functions of Cpne7-DP in tubular dentin formation and peritubular space occlusion are promising for the treatment of dentinal loss and sensitivity.

8.
J Mol Histol ; 50(3): 179-188, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30863901

RESUMO

Interactions between the ectodermal and mesenchymal tissues are the basis of the central mechanism regulating tooth development. Based on this epithelial-mesenchymal interaction (EMI), we demonstrated that copine-7 (CPNE7) is secreted by preameloblasts and regulates the differentiation of mesenchymal cells of dental or non-dental origin into odontoblasts. However, the precise expression patterns of CPNE7 in the stages of tooth development have not yet been elucidated. The aim of the present study was to establish the spatiotemporal expression pattern of CPNE7 during mouse tooth development. To examine the spatiotemporal expression patterns of CPNE7 during mouse tooth development, we investigate the distribution of CPNE7 in the embryonic and postnatal developing mouse tooth. Immunohistochemistry, in situ hybridization, real-time PCR, and western blot analysis are performed to investigate the CPNE7 expression pattern during tooth development of the mandibular mouse first molar. During the initiation stage (bud stage), CPNE7 protein expression is observed in the dental epithelium but not yet in the dental mesenchyme. At E18 (bell stage), expression of CPNE7 protein and mRNA is primarily observed in ectomesenchymal cells of dental papilla. At P7 (crown formation stage), CPNE7 is localized in differentiating odontoblasts but weak expression is detected in mature ameloblasts. These findings suggest that CPNE7 secreted by dental epithelium induces the differentiation of ectomesenchymal cells into preodontoblast in concert with EMI. CPNE7 is clearly expressed in differentiating odontoblasts and the odontoblast process during dentinogenesis, but is no longer expressed in fully differentiated odontoblasts. Furthermore, CPNE7 is expressed in the Hertwig's epithelial root sheath (HERS) and in the facing preodontoblasts during root dentin formation. Taken together, these results illustrate the dynamic expression of CPNE7 during tooth development and suggest its important function in entire stages of tooth development.


Assuntos
Diferenciação Celular/genética , Dentinogênese/genética , Proteínas de Membrana/metabolismo , Dente Molar/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Papila Dentária/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Camundongos , Dente Molar/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Dente/metabolismo
9.
J Mol Histol ; 49(3): 265-276, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525888

RESUMO

Preameloblast-conditioned medium (PACM) has been reported as a potent dentin regenerative material, but its effects as a mixture on periodontal regeneration and the role of CPNE7 in PACM are not known. The purpose of this study is to evaluate the histologic and histomorphometric effects of preameloblast-conditioned medium (PACM) and CPNE7 on periodontal tissue healing in dogs. Seventy-two mandibular premolar roots from ten dogs were extracted and randomly divided into six groups (n = 12 each): (1) positive control group; (2) negative control group; (3) cementum-removed and PACM-treated group; (4) cementum-preserved and PACM-treated group; (5) CPNE7-inactivated PACM-treated group; and (6) recombinant CPNE7-treated group. The extracted roots were replanted into extraction sockets for 4 and 8 weeks and analyzed histologically. Most of the root surfaces in the negative control group showed ankylosis; and those in the experimental groups showed newly formed PDL-like and cementum-like tissues. Histomorphometric analysis of horizontal sections showed that the mean length of the PDL on the roots of the positive controls was similar to those in cementum-removed or -preserved and PACM-treated group at 8 weeks (p = 1.08). Sagittal sections showed that the mean length of the new cementum on the roots in cementum-removed and PACM-treated group was significantly greater than that in CPNE7-inactivated PACM-treated group (p = 0.037). The mean length of the newly formed PDL on the roots in CPNE7- inactivated PACM-treated and rCPNE7-treated groups was significantly greater than that in the negative controls at 8 weeks (p = 0.037, p = 0.036). The use of PACM and CPNE7 in tooth replantation resulted in increased PDL and cementum formation, suggesting the beneficial role of PACM and CPNE7 in periodontal tissue healing.


Assuntos
Ameloblastos/citologia , Proteínas de Transporte/metabolismo , Meios de Cultivo Condicionados/farmacologia , Proteínas de Membrana/farmacologia , Raiz Dentária/efeitos dos fármacos , Animais , Dente Pré-Molar , Cemento Dentário , Cães , Ligamento Periodontal/ultraestrutura , Reimplante Dentário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA