Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 4(11): 7967-7978, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006778

RESUMO

Inflammation plays an essential role in the human immune system, and anti-inflammatory compounds are important to promote health. However, the in vitro screening of these compounds is largely dependent on flat biology. Herein, we report our efforts in establishing a 3D inflammation murine macrophage model. Murine macrophage RAW 264.7 cells were cultured on poly(ε-caprolactone) (PCL) scaffolds fabricated through an electrohydrodynamic jetting 3D printer and their behavior were examined. Cells on PCL scaffolds showed a 3D shape and morphology with multilayers and a lower proliferation rate. Moreover, macrophages were not activated by scaffold material PCL and 3D microenvironment. The 3D cells showed greater sensitivity to lipopolysaccharide stimulation with higher production activity of nitric oxide (NO), nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). Additionally, the 3D macrophage model showed lower drug sensitivity to commercial anti-inflammatory drugs including aspirin, ibuprofen, and dexamethasone, and natural flavones apigenin and luteolin with higher IC50 for NO production and lower iNOS and COX-2 inhibition efficacy. Overall, the 3D macrophage model showed promise for higher accurate screening of anti-inflammatory compounds. We developed, for the first time, a 3D macrophage model based on a 3D-printed PCL scaffold that provides an extracellular matrix environment for cells to grow in the 3D dimension. 3D-grown RAW 264.7 cells showed different sensitivities and responses to anti-inflammatory compounds from its 2D model. The 3D cells have lower sensitivity to both commercial and natural anti-inflammatory compounds. Consequently, our 3D macrophage model could be applied to screen anti-inflammatory compounds more accurately and thus holds great potential in next-generation drug screening applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2 , Promoção da Saúde , Humanos , Inflamação , Camundongos , Óxido Nítrico , Poliésteres , Células RAW 264.7 , Engenharia Tecidual/métodos
2.
ACS Appl Bio Mater ; 4(2): 1381-1394, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014489

RESUMO

Scaffold-based three-dimensional (3D) cell culture systems have gained increased interest in cell biology, tissue engineering, and drug screening fields as a replacement of two-dimensional (2D) monolayer cell culture and as a way to provide biomimetic extracellular matrix environments. In this study, microscale fibrous scaffolds were fabricated via electrohydrodynamic printing, and nanoscale features were created on the fiber surface by simply leaching gliadin of poly(ε-caprolactone) (PCL)/gliadin composites in ethanol solution. The microstructure of the printed scaffolds could be precisely controlled by printing parameters, and the surface nanotopography of the printed fiber could be tuned by varying the PCL/gliadin ratios. By seeding mouse embryonic fibroblast (NIH/3T3) cells and human nonsmall cell lung cancer (A549) cells on the printed scaffolds, the cellular responses showed that the fiber nanotopography on printed scaffolds efficiently favored cell adhesion, migration, proliferation, and tissue formation. Quantitative analysis of the transcript expression levels of A549 cells seeded on nanoporous scaffolds further revealed the upregulation of integrin-ß1, focal adhesion kinase, Ki-67, E-cadherin, and epithelial growth factor receptors over what was observed in the cells grown on the pure PCL scaffold. Furthermore, a significant difference was found in the relevant biomarker expression on the developed scaffolds compared with that in the monolayer culture, demonstrating the potential of cancer cell-seeded scaffolds as 3D in vitro tumor models for cancer research and drug screening.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Engenharia Tecidual , Células A549 , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Gliadina/química , Humanos , Camundongos , Microfibrilas , Células NIH 3T3 , Nanoestruturas , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA