Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zoolog Sci ; 29(12): 815-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23215972

RESUMO

Termites are social insects with an extraordinary ability to digest cellulose. Termite societies are structured into castes, and patterns of postembryonic development vary between different termite species. The apterous line may exhibit polymorphism ("physical castes"), in which workers are dimorphic and soldiers can be either dimorphic or trimorphic. We examined the occurrence of polymorphism in the apterous line of Velocitermes heteropterus and determined the developmental pathways for this termite species. We also investigated the expression of the cellulase genes encoding ß-glucosidase and endo-ß-1,4-glucanase among the castes to determine whether there is a difference in digestion and, consequently, a possible division of labor with respect to this activity among the worker castes. The apterous line of V. heteropterus presents individuals of both sexes with two larval instars. The female larvae become major workers, and the male larvae become minor workers and soldiers. The expression of ß-glucosidase was similar within the castes, but the expression of endo-ß-1,4-glucanase was higher in workers than in soldiers. No significant differences were found between minor and major workers. These results suggest that there is no division of labor between the minors and majors with regard to cellulose digestion, with both workers contributing similarly to this process.


Assuntos
Celulose/metabolismo , Isópteros/crescimento & desenvolvimento , Isópteros/fisiologia , Animais , Celulases/genética , Celulases/metabolismo , Digestão , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Isópteros/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Fatores Sexuais , Especificidade da Espécie
2.
Insect Biochem Mol Biol ; 43(10): 970-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917163

RESUMO

Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-ß-1,4-glucosidase and exo-ß-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications.


Assuntos
Glicosídeo Hidrolases/metabolismo , Isópteros/enzimologia , Animais , Celulose/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Cinética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA