Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437917

RESUMO

Cellulosomes are multienzyme complexes produced by anaerobic, cellulolytic bacteria for highly efficient breakdown of plant cell wall polysaccharides. Clostridium clariflavum is an anaerobic, thermophilic bacterium that produces the largest assembled cellulosome complex in nature to date, comprising three types of scaffoldins: a primary scaffoldin, ScaA; an adaptor scaffoldin, ScaB; and a cell surface anchoring scaffoldin, ScaC. This complex can contain 160 polysaccharide-degrading enzymes. In previous studies, we proposed potential types of cellulosome assemblies in C. clariflavum and demonstrated that these complexes are released into the extracellular medium. In the present study, we explored the disposition of the highly structured, four-tiered cell-anchored cellulosome complex of this bacterium. Four separate, integral cellulosome components were subjected to immunolabeling: ScaA, ScaB, ScaC, and the cellulosome's most prominent enzyme, GH48. Imaging of the cells by correlating scanning electron microscopy and three-dimensional (3D) superresolution fluorescence microscopy revealed that some of the protuberance-like structures on the cell surface represent cellulosomes and that the components are highly colocalized and organized by a defined hierarchy on the cell surface. The display of the cellulosome on the cell surface was found to differ between cells grown on soluble or insoluble substrates. Cell growth on microcrystalline cellulose and wheat straw exhibited dramatic enhancement in the amount of cellulosomes displayed on the bacterial cell surface.IMPORTANCE Conversion of plant biomass into soluble sugars is of high interest for production of fermentable industrial materials, such as biofuels. Biofuels are a very attractive alternative to fossil fuels, both for recycling of agricultural wastes and as a source of sustainable energy. Cellulosomes are among the most efficient enzymatic degraders of biomass known to date, due to the incorporation of a multiplicity of enzymes into a potent, multifunctional nanomachine. The intimate association with the bacterial cell surface is inherent in its efficient action on lignocellulosic substrates, although this property has not been properly addressed experimentally. The dramatic increase in cellulosome performance on recalcitrant feedstocks is critical for the design of cost-effective processes for efficient biomass degradation.


Assuntos
Celulossomas/metabolismo , Clostridium/enzimologia , Proteínas de Membrana/metabolismo , Celulose/metabolismo , Clostridium/crescimento & desenvolvimento , Clostridium/metabolismo , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Coloração e Rotulagem/métodos , Triticum/metabolismo
2.
Tissue Eng Part A ; 21(5-6): 1013-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25366879

RESUMO

Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.


Assuntos
Materiais Biocompatíveis/farmacologia , Fulerenos/farmacologia , Teste de Materiais/métodos , Nanopartículas/química , Nanotubos/química , Glândula Submandibular/citologia , Sulfetos/farmacologia , Compostos de Tungstênio/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Nanopartículas/ultraestrutura , Nanotubos/ultraestrutura , Ratos , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA