Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1202: 339689, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341508

RESUMO

Molecularly imprinted polymer (MIP) membranes prepared in situ present several advantages: they maintain the original morphology, adhere strongly to the collector, and exhibit a controllable structure. In this study, a Ni-polyacrylamide (PAM)-MIP matrix was fabricated in situ on glassy carbon via the one-step electro-polymerization of AM monomers in the presence of Ni and template molecules. Ni2+ ions were introduced as oxidants to promote AM polymerization and bulking agents to fabricate a three-dimensional porous PAM-MIP matrix. The Ni-PAM-based MIP sensor exhibited a quantitative dual response toward dopamine (DA) and adenine (Ade) in the pH range of 5.0-9.0. The linear concentration range changed depending on the pH environment, and the concentrations of DA and Ade ranged from 0.6 to 200 µM and from 0.4 to 300 µM, respectively. The ranges of detection limits (S/N = 3) were 0.12-0.37 µM for DA and 0.15-0.36 µM for Ade. In addition, the dual-MIP sensor exhibited high reliability in the detection of DA and Ade in human serum owing to its excellent anti-interference ability and long-term stability. The technique developed in this study is expected to facilitate the construction of multi-target response electrochemical biosensors and the reliable determination of small molecules with high selectivity and stability.


Assuntos
Dopamina , Impressão Molecular , Resinas Acrílicas , Adenina , Dopamina/química , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Impressão Molecular/métodos , Polímeros/química , Reprodutibilidade dos Testes
2.
Anal Chim Acta ; 1190: 339264, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34857144

RESUMO

A surface acoustic wave (SAW) gas sensor with an Au/TiO2/poly(3,4-ethylenedioxythiophene) (PEDOT, which is a conductive polymer with photoelectric conversion function) sensing film was constructed for the quantitative detection of water vapor and CO2. The Au/TiO2/PEDOT sensing film was assembled on the delayed region of the 204 MHz SAW delay line, which was used as the base device for the gas sensor. The center frequency of the sensor decreases with an increase in relative humidity (RH), and the center frequency increases with increasing CO2 concentration, so that not only can the two gases be identified, but quantitative analysis can also be performed. The SAW sensor has a response range of 5%-90% for RH and a response range of 500-2000 ppm for CO2 gas. The shifts in center frequency varied linearly with the concentrations, giving rise to the sensitivities of -0.0068 and -0.1880 kHz %-1 for RH and ∼0.003 kHz ppm-1 CO2. The response/recovery time is 9 s/9.2 s for 700 ppm CO2 and 15 s/14 s for 70% RH. The experimental results show that the SAW sensor offers excellent selectivity, wide response range, rapid response, and good stability and repeatability. The mechanism of humidity and CO2 sensing is attributed to the hydrophilic porous structure of the Au/TiO2/PEDOT sensing film, and also to the reversible variation of its viscoelasticity under illumination conditions. The sensor, combined with the communication function of its own SAW device, has several prospective applications in the monitoring of atmospheric conditions.


Assuntos
Dióxido de Carbono , Som , Compostos Bicíclicos Heterocíclicos com Pontes , Umidade , Polímeros , Titânio
3.
Anal Chim Acta ; 1145: 103-113, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453871

RESUMO

The in vivo detection of small active molecules in plant tissues is essential for the development of precision agriculture. Tryptophan (Trp) is an important precursor material for auxin biosynthesis in plants, and the detection of Trp levels in plants is critical for regulating the plant growth process. In this study, an electrochemical plant sensor was fabricated by electrochemically depositing a polydopamine (PDA)/reduced graphene oxide (RGO)-MnO2 nanocomposite onto a glassy carbon electrode (GCE). PDA/RGO-MnO2/GCE exhibited high electrocatalytic activity for the oxidation of Trp owing to the combined selectivity of PDA and catalytic activity of RGO-MnO2. To address the pH variability of plants, a reliable Trp detection program was proposed for selecting an appropriate quantitative detection model for the pH of the plant or plant tissue of interest. Therefore, a series of linear regression curves was constructed in the pH range of 4.0-7.0 using the PDA/RGO-MnO2/GCE-based sensor. In this pH range, the linear detection range of Trp was 1-300 µM, the sensitivity was 0.39-1.66 µA µM-1, and the detection limit was 0.22-0.39 µM. Moreover, the practical applicability of the PDA/RGO-MnO2/GCE-based sensor was successfully demonstrated by determining Trp in tomato fruit and juice. This sensor stably and reliably detected Trp levels in tomatoes in vitro and in vivo, demonstrating the feasibility of this research strategy for the development of electrochemical sensors for measurements in various plant tissues.


Assuntos
Grafite , Técnicas Eletroquímicas , Indóis , Compostos de Manganês , Óxidos , Polímeros , Triptofano
4.
Biosens Bioelectron ; 170: 112675, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038583

RESUMO

A miniaturized biosensor was developed for in situ noninvasive detection of glucose in sweat. The biosensor was composed of a pair of interdigital Pt-poly(L-lactic acid) (Pt-PLA) microelectrode arrays operating as the working and auxiliary electrode. The size of the sensor was 3.56 × 0.72 mm, while the width of the interdigital microelectrodes was 2.4 µm. The microelectrodes with densely packed coral-like Pt-PLA nanoparticles were fabricated using a multi-potential step deposition process. We investigated the influence of the Pt-PLA electrodeposition time on the morphology and electrochemical performance of the microelectrode. The optimized biosensor exhibited high electrocatalytic activity because of the synergistic effects between the Pt nanoparticles and PLA polymer matrix, including the electrooxidation of Pt on glucose, the adsorption of glucose by the PLA polymer, and the acceleration of the glucose dehydrogenation step. For glucose detection in sweat and tears, the linear concentration ranges were observed to be 0.001-33.76 µM and 33.76-1000 µM, with a low detection limit of 0.19 nM. The miniaturized biosensor exhibited high sensitivity and signal stability, and could be suitable for use in the long-term monitoring of sweat glucose levels in patients, athletes, and other subjects in various difficult environments.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Enzimas Imobilizadas , Glucose , Humanos , Ácido Láctico , Microeletrodos , Platina , Poliésteres , Suor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA