Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 4(2): 272-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26484364

RESUMO

A well-defined core-shell nano-carrier (PAA-MHAPNs) was successfully synthesized based on a graft-onto method by using mesoporous hydroxyapatite nanoparticles (MHAPNs) as the core and polyacrylic acid (PAA) as the shell. Given that MHAPNs are regarded as one of the most promising drug delivery vehicles due to their excellent performance and the nature of their cancer cell anti-proliferative effect, and the grafted PAA, as a pH-responsive switch, could improve the loading amount of the drug doxorubicin hydrochloride (DOX) effectively by electrostatic interactions, all these advantages mean that the designed models show promise for application in pH-responsive drug delivery systems. The loading content and entrapment efficiency of DOX could reach up to 3.3% and 76%, respectively. The drug release levels of the constructed DOX@PAA-MHAPNs were low under normal physiological conditions (pH 7.4), but they could be increased significantly with a decrease of pH. Cytotoxicity assays indicated that the PAA-MHAPNs was biocompatible, and more importantly, the DOX@PAA-MHAPNs demonstrated an obvious ability to induce apoptosis of cancer cells. Overall, the synthesized systems should show great potential as drug nanovehicles with excellent biocompatibility, high drug loading, and pH-responsive features for future intracellular drug delivery.


Assuntos
Resinas Acrílicas/química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Durapatita/química , Nanopartículas/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Durapatita/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Porosidade
2.
Colloids Surf B Biointerfaces ; 145: 526-538, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281238

RESUMO

A glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer (PCL-SS-CTS-GA) micelle was developed for the co-delivery of doxorubicin (DOX) and curcumin (CCM) to hepatoma cells. Glycyrrhetinic acid (GA) was used as a targeting unit to ensure specific delivery. Co-encapsulation of DOX and CCM was facilitated by the incorporation of poly(ε-caprolactone) (PCL) groups. The highest drug loading content was 19.8% and 8.9% (w/w) for DOX and CCM, respectively. The PCL-SS-CTS-GA micelle presented a spherical or ellipsoidal geometry with a mean diameter of approximately 110nm. The surface charge of the micelle changed from negative to positive, when the pH value of the solution decreased from 7.4 to 6.8. Meanwhile, it also exhibited a character of redox-responsive drug release and GA/pH-mediated endocytosis in vitro. In simulated body fluid with 10mM glutathione, the release rate in 12h was 80.6% and 67.2% for DOX and CCM, respectively. The cell uptake of micelles was significantly higher at pH 6.8 than pH 7.4. The combined administration of DOX and CCM was facilitated by PCL-SS-CTS-GA micelle. Results showed that there was strong synergic effect between the two drugs. The PCL-SS-CTS-GA micelle might turn into a promising and effective carrier for improved combination chemotherapy.


Assuntos
Quitosana/química , Curcumina/farmacologia , Cistamina/química , Doxorrubicina/farmacologia , Ácido Glicirretínico/química , Micelas , Neoplasias/tratamento farmacológico , Poliésteres/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA