Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2305300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37547955

RESUMO

Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipídeos , Lipossomos , RNA Interferente Pequeno
2.
Int J Biol Macromol ; 267(Pt 1): 131291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583839

RESUMO

Bacterial cellulose (BC) hydrogels are promising medical biomaterials that have been widely used for tissue repair, wound healing and cartilage engineering. However, the high water content of BC hydrogels increases the difficulty of storage and transportation. Moreover, they will lose their original hydrogel structure after dehydration, which severely limits their practical applications. Introducing the bio-based polyelectrolytes is expected to solve this problem. Here, we modified BC and combined it with quaternized chitosan (QCS) via a chemical reaction to obtain a dehydrated dialdehyde bacterial cellulose/quaternized chitosan (DBC/QCS) hydrogel with repeated swelling behavior and good antibacterial properties. The hydrogel can recover the initial state on the macro scale with a swelling ratio over 1000 % and possesses excellent antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with a killing rate of 80.8 % and 81.3 %, respectively. In addition, the hydrogel has excellent biocompatibility, which is conducive to the stretching of L929 cells. After 14 d of in vivo wound modeling in rats, it was found that the hydrogel loaded with pirfenidone (PFD) could promote collagen deposition and accelerate wound healing with scar prevention. This rehydratable hydrogel can be stored and transported under dry conditions, which is promising for practical applications.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Hidrogéis , Staphylococcus aureus , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Staphylococcus aureus/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Escherichia coli/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Camundongos , Linhagem Celular , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA