Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(2): 455-473, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31686144

RESUMO

Exploring a cheap and clean renewable energy has become a common destination round the world with the depletion of oil resources and the concerns of increasing energy demands. Lignocellulosic biomass is the most abundant renewable resource in the biosphere, and the total biomass formed by plant photosynthesis reached more than 200 billion tons every year. Cellulase and hemicellulose and lignin degradation enzymes, the efficient biocatalyst, could efficiently convert the lignocellulosic biomass into sugars that could be further processed into biofuels, biochemical, and biomaterial for human requirement. The utilization and conversion of cellulosic biomass has great significance to solve the problems such as environmental pollution and energy crisis. Lignocellulosic materials are widely considered as important sources to produce sugar streams that can be fermented into ethanol and other organic chemicals. Pretreatment is a necessary step to overcome its intrinsic recalcitrant nature prior to the production of important biomaterial that has been investigated for nearly 200 years. Emerging research has focused in order of economical, eco-friendly, and time-effective solutions, for large-scale operational approach. These new mentioned technologies are promising for lignocellulosic biomass degradation in a huge scale biorefinery. This review article has briefly explained the emerging technologies especially the consolidated bioprocessing, chemistry, and physical base pretreatment and their importance in the valorization of lignocellulosic biomass conversion.


Assuntos
Biotecnologia/métodos , Biotecnologia/tendências , Lignina/metabolismo , Açúcares/metabolismo , Biotransformação , Fermentação , Humanos , Hidrólise , Lignina/química
2.
Biomacromolecules ; 19(5): 1686-1696, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29617128

RESUMO

Processive hydrolysis of crystalline cellulose by cellulases is a critical step for lignocellulose deconstruction. The classic Trichoderma reesei exoglucanase TrCel7A, which has a closed active-site tunnel, starts each processive run by threading the tunnel with a cellulose chain. Loop regions are necessary for tunnel conformation, resulting in weak thermostability of fungal exoglucanases. However, endoglucanase CcCel9A, from the thermophilic bacterium Clostridium cellulosi, comprises a glycoside hydrolase (GH) family 9 module with an open cleft and five carbohydrate-binding modules (CBMs) and hydrolyzes crystalline cellulose processively. How CcCel9A and other similar GH9 enzymes bind to the smooth surface of crystalline cellulose to achieve processivity is still unknown. Our results demonstrate that the C-terminal CBM3b and three CBMX2s enhance productive adsorption to cellulose, while the CBM3c adjacent to the GH9 is tightly bound to 11 glucosyl units, thereby extending the catalytic cleft to 17 subsites, which facilitates decrystallization by forming a supramodular binding surface. In the open cleft, the strong interaction forces between substrate-binding subsites and glucosyl rings enable cleavage of the hydrogen bonds and extraction of a single cellulose chain. In addition, subsite -4 is capable of drawing the chain to its favored location. Cellotetraose is released from the open cleft as the initial product to achieve high processivity, which is further hydrolyzed to cellotriose, cellobiose and glucose by the catalytic cleft of the endoglucanase. On this basis, we propose a wirewalking mode for processive degradation of crystalline cellulose by an endoglucanase, which provides insights for rational design of industrial cellulases.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Celulase/genética , Celulase/metabolismo , Clostridium/enzimologia , Clostridium/genética , Hidrólise , Ligação Proteica
3.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130305

RESUMO

Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii, leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD+ ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation.IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium beijerinckii/metabolismo , Zea mays/metabolismo , Biomassa , Fermentação , Lignina/metabolismo , NAD , Solventes/metabolismo
4.
Mol Biosyst ; 11(11): 3164-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26392378

RESUMO

Thermophilic bacterium Caldicellulosiruptor sp. F32 can utilize cellulose-, hemicellulose-containing biomass, including unpretreated wheat straw. We have conducted a bioinformatics analysis of the carbohydrate-active enzyme (CAZyme) in the genome of Caldicellulosiruptor sp. F32, which reveals a broad substrate range of the strain. Among 2285 predicted open reading frames (ORFs), 73 (3.2%) CAZyme encoding genes, including 44 glycoside hydrolases (GHs) distributing in 22 GH families, 6 carbohydrate esterases (CEs), 3 polysaccharide lyases (PLs), 21 glycosyl transferases (GTs), and 25 carbohydrate-binding modules (CBMs) were found. An in-depth bioinformatics analysis of CAZyme families that target cellulose, hemicellulose, chitin, pectin, starch, and ß-1,3-1,4-glucan degradation were performed to highlight specialized polysaccharide degrading abilities of strain F32. A great number of orthologous multimodular CAZymes of Caldicellulosiruptor sp. F32 were found in other strains of genus Caldicellulosiruptor. While, a portion of the CAZymes of Caldicellulosiruptor sp. F32 showed sequence identity with proteins from strains of genus Clostridium. A thermostable ß-glucosidase BlgA synergistically facilitated the enzymatic degradation of Avicel by endo-1,4-ß-glucanase CelB, which indicated that the synchronous action of synergism between CAZymes enhanced the lignocellulose degradation by Caldicellulosiruptor sp. F32.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Genoma Bacteriano , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Quitina/metabolismo , Estabilidade Enzimática , Lignina , Fases de Leitura Aberta , Pectinas/metabolismo , Amido/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA