RESUMO
Modified chitosan such as chitosan alpha-ketoglutaric acid (KCTS) and hydroxamated chitosan alpha-ketoglutaric acid (HKCTS) were successfully prepared. The modified chitosan were employed in the formation of drug-loaded, iron(III)-crosslinked polymeric beads. The produced polymers were characterized by IR, NMR, WXRD and DSC measurements. The resulting beads were evaluated in vitro as drug prolonging and potentially orally administered delivery system. Theophylline was used as the loaded model drug. The generated beads proved to be successful in prolonging drug release. The release kinetics was evaluated by fitting the experimental data to standard release equations (zero-, first- and Higuchi equation). The best fit was found with Higuchi model for the polymeric beads.
Assuntos
Quitosana/química , Preparações de Ação Retardada , Ácidos Cetoglutáricos/química , Modelos Químicos , Teofilina/química , Química Farmacêutica , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , PolímerosRESUMO
O-carboxymethylchitosan (OCMC) microspheres containing an antibiotic drug pazufloxacin mesilate (PM) have been successfully prepared by emulsion cross-linking using glutaraldehyde (GA). Various manufacturing parameters, including amount of cross-linking agent and OCMC:PM ratios were altered to optimize process variables during the microspheres production. The structure and morphology were characterized by Fourier transform infrared (FT-IR), wide-angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The swelling and releasing behaviors of the microspheres at pH 1.2 and 7.4 media were investigated. The results revealed that the microspheres had a spherical, rough morphology and with a narrow size distribution. The degree of swelling of microspheres at pH 7.4 media was higher than that at pH 1.2 media. The microspheres proved to be successful in prolonging drug release. The release of PM was found to depend upon the extent of matrix cross-linking and drug loading. The release profiles of PM from OCMC microspheres were found to be biphasic with a burst release followed by a gradual release phase, and followed the Higuchi matrix model.