Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mater Chem B ; 8(1): 65-77, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31768514

RESUMO

Gold nanostars (AuNSs), with unique physicochemical properties, are thought to be a promising agent for photothermal therapy (PTT). In this study, we prepared PEGylated gold nanostars (pAuNSs) using the HEPES-reduction method. The high photothermal conversion efficiency (∼80%) and photothermal stability of pAuNSs were demonstrated in vitro and in vivo. 111In-DTPA-pAuNSs were prepared as a radioactive surrogate for the biodistribution studies of pAuNSs. In both microSPECT/CT images and the biodistribution study, the tumor-to-muscle (T/M) ratio reached a maximum at 24 h post intravenous injection of 111In-DTPA-pAuNSs. The high linear correlation between the 111In radioactivity and the gold content in the tumors (R2 0.86-0.99) indicated that 111In-DTPA-pAuNSs were appropriate for noninvasively tracking pAuNSs in vivo after systemic administration. Histological examination after silver enhancement staining clearly illustrated that the accumulated pAuNSs in the tumors were mainly located on the luminal surface of vessels. The mice bearing a SKOV-3 xenograft exhibited remarkable therapeutic efficacy with negligible organ damage after receiving pAuNS-mediated photothermal therapy. Our findings suggested that pAuNSs, together with their radioactive surrogate 111In-DTPA-pAuNSs, are promising for applications in image-guided photothermal therapy.


Assuntos
Ouro/farmacocinética , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia/métodos , Polietilenoglicóis/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Ouro/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
Theranostics ; 8(11): 3164-3175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896310

RESUMO

Rationale: Increasing frequency of human exposure to PEG-related products means that healthy people are likely to have pre-existing anti-PEG antibodies (pre-αPEG Ab). However, the influence of pre-αPEG Abs on the pharmacokinetics (PK) and therapeutic efficacy of LipoDox is unknown. Methods: We generated two pre-αPEG Ab mouse models. First, naïve mice were immunized with PEGylated protein to generate an endogenous αPEG Ab titer (endo αPEG). Second, monoclonal αPEG Abs were passively transferred (αPEG-PT) into naïve mice to establish a αPEG titer. The naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its PK. Tumor-bearing naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its biodistribution. The therapeutic efficacy of LipoDox was estimated in the tumor-bearing mice. Results: The areas under the curve (AUC)last of LipoDox in endo αPEG and αPEG-PT mice were 11.5- and 15.6- fold less, respectively, than that of the naïve group. The biodistribution results suggested that pre-αPEG Ab can significantly reduce tumor accumulation and accelerate blood clearance of 111In-labeled LipoDox from the spleen. The tumor volumes of the tumor-bearing endo αPEG and αPEG-PT mice after treatment with LipoDox were significantly increased as compared with that of the tumor-bearing naïve mice. Conclusions: Pre-αPEG Abs were found to dramatically alter the PK and reduce the tumor accumulation and therapeutic efficacy of LipoDox. Pre-αPEG may have potential as a marker to aid development of personalized therapy using LipoDox and achieve optimal therapeutic efficacy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Anticorpos/imunologia , Doxorrubicina/análogos & derivados , Neoplasias Experimentais/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/imunologia , Antibióticos Antineoplásicos/farmacocinética , Anticorpos/sangue , Doxorrubicina/imunologia , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico
3.
Mol Imaging Biol ; 19(3): 408-420, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27730471

RESUMO

PURPOSE: Surgical resection is the standard treatment for localized colorectal cancer, which is the most common type of gastrointestinal cancer. However, over 40 % cases are diagnosed metastasized and apparently inoperable. Systemic chemotherapy provides an alternative to these patients. This study aims to evaluate the therapeutic potential of liposomal doxorubicin (lipoDox) in combination with liposomal vinorelbine (lipoVNB) in a CT-26 colon carcinoma-bearing mouse model. PROCEDURES: The in vitro cytotoxicity of Dox and VNB on CT-26 cancer cells was determined by MTT and colony formation assays. Mice were subcutaneously inoculated with 2 × 105 of CT-26 cells in the right hind flank. When tumor size reached 200 ± 50 mm3, mice were assigned to receive different treatment protocols. The pharmacokinetics, micro single-photon emission computed tomography/x-ray computed tomography imaging, biodistribution, and immunohistochemical staining studies were performed to survey the therapeutic efficacy of each regimen. RESULTS: Based on the results of pharmacokinetic study, co-administration of lipoDox and lipoVNB did not affect their individual systemic distribution, while lipoDox retained longer in blood than lipoVNB did. Superior tumor growth retardation was observed in the group received lipoDox plus lipoVNB administration (1 mg/kg each, namely D1V1) than those injected with lipoDox plus VNB (1 mg/kg each, namely D1fV1). No severe side effects were detected in each group. The tumor-to-muscle ratio (T/M) derived from 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT) micro positron emission tomography (PET) images of D1V1- and D1fV1-treated mice and the controls on day 7 was 6.88 ± 0.54, 7.50 ± 0.84, and 9.87 ± 0.73, respectively, suggesting that D1V1 is a more efficacious regimen against CT-26 xenografts. The results of proliferating cell nuclear antigen (PCNA) immunohistochemical staining were consistent with those findings obtained from [18F]FLT microPET imaging. CONCLUSION: This study demonstrated that lipoDox in combination with lipoVNB was more efficacious than clinically used regimen, lipoDox plus VNB, in the treatment of colon carcinoma and [18F]FLT-PET is a promising approach in monitoring the treatment outcome at early stage.


Assuntos
Didesoxinucleosídeos/uso terapêutico , Doxorrubicina/análogos & derivados , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Vimblastina/análogos & derivados , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Didesoxinucleosídeos/sangue , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imuno-Histoquímica , Camundongos , Neoplasias/sangue , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Fatores de Tempo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Vimblastina/sangue , Vimblastina/farmacocinética , Vimblastina/farmacologia , Vimblastina/uso terapêutico , Vinorelbina , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 6: 39119, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991598

RESUMO

Attachment of polyethylene glycol (PEG) molecules to nanoparticles (PEGylation) is a widely-used method to improve the stability, biocompatibility and half-life of nanomedicines. However, the evaluation of the PEGylated nanomedicine pharmacokinetics (PK) requires the decomposition of particles and purification of lead compounds before analysis by high performance liquid chromatography (HPLC), mass spectrometry, etc. Therefore, a method to directly quantify un-decomposed PEGylated nanoparticles is needed. In this study, we developed anti-PEG bioparticles and combined them with anti-PEG antibodies to generate a quantitative enzyme-linked immunosorbent assay (ELISA) for direct measurement of PEGylated nanoparticles without compound purification. The anti-PEG bioparticles quantitative ELISA directly quantify PEG-quantum dots (PEG-QD), PEG-stabilizing super-paramagnetic iron oxide (PEG-SPIO), Lipo-Dox and PEGASYS and the detection limits were 0.01 nM, 0.1 nM, 15.63 ng/mL and 0.48 ng/mL, respectively. Furthermore, this anti-PEG bioparticle-based ELISA tolerated samples containing up to 10% mouse or human serum. There was no significant difference in pharmacokinetic studies of radiolabeled PEG-nanoparticles (Nano-X-111In) through anti-PEG bioparticle-based ELISA and a traditional gamma counter. These results suggest that the anti-PEG bioparticle-based ELISA may provide a direct and effective method for the quantitation of any whole PEGylated nanoparticles without sample preparation.


Assuntos
Anticorpos/metabolismo , Nanopartículas/química , Polietilenoglicóis/análise , Soro/química , Animais , Biotinilação , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Polietilenoglicóis/química , Pontos Quânticos
5.
PLoS One ; 8(5): e63078, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675454

RESUMO

PURPOSE: PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR) effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse model. METHODS: Empty PEGylated liposomes (NanoX) and those encapsulated with VNB (NanoVNB) were labeled with In-111 to obtain InNanoX and InVNBL in high labeling yield and radiochemical purity (all >90%). BALB/c mice bearing either small (58.4±8.0 mm(3)) or large (102.4±22.0 mm(3)) C26/tk-luc tumors in the right dorsal flank were intravenously administered with NanoVNB, InNanoX, InVNBL, or NanoX as a control, every 7 days for 3 times. The therapeutic efficacy was evaluated by body weight loss, tumor growth inhibition (using calipers and bioluminescence imaging) and survival fraction. The scintigraphic imaging of tumor mouse was performed during and after treatment. RESULTS: The biodistribution study of InVNBL revealed a clear inverse correlation (r (2) = 0.9336) between the tumor uptake and the tumor mass ranged from 27.6 to 623.9 mg. All three liposomal drugs showed better therapeutic efficacy in small-tumor mice than in large-tumor mice. Tumor-bearing mice treated with InVNBL (a combination drug) showed the highest tumor growth inhibition rate and survival fraction compared to those treated with NanoVNB (chemodrug only) and InNanoX (radionuclide only). Specific tumor targeting and significantly increased tumor uptake after periodical treatment with InVNBL were evidenced by scintigraphic imaging, especially in mice bearing small tumors. CONCLUSION: The significant differences in the outcomes of cancer treatment and molecular imaging between animals bearing small and large tumors revealed that tumor burden is a critical and discriminative factor in cancer therapy using PEGylated liposomal drugs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Carga Tumoral/efeitos dos fármacos , Vimblastina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/farmacocinética , Peso Corporal , Linhagem Celular Tumoral , Neoplasias do Colo/mortalidade , Diagnóstico por Imagem , Modelos Animais de Doenças , Esquema de Medicação , Lipossomos/química , Medições Luminescentes , Masculino , Camundongos , Polietilenoglicóis/química , Tomografia Computadorizada de Emissão , Vimblastina/administração & dosagem , Vimblastina/farmacocinética , Vinorelbina
6.
Cancer Biother Radiopharm ; 26(3): 373-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21711113

RESUMO

PEGylated liposomes are important drug carriers for nanomedicine cancer therapy. PEGylated liposomes can encapsulate radio- and chemo-drugs and passively target tumor sites via enhanced permeability and retention effect. This study estimated the pharmacokinetics and dosimetry after administration of radio-chemotherapeutics ((111)In-labeled vinorelbine [VNB]-encapsulated liposomes, InVNBL, and (188)Re-labeled doxorubicin [DXR]-encapsulated liposomes, ReDXRL) for radionuclide therapy in two colon carcinoma-bearing mouse models. A C26 colon carcinoma tumor/ascites mouse model and a subcutaneous solid tumor-bearing mouse model were employed. Biodistribution studies of InVNBL and ReDXRL after intraperitoneal administration in tumor/ascites-bearing mice (protocol A) and intravenous administration in subcutaneous solid tumor-bearing mice (protocol B) were performed. The radiation dose to normal tissues and tumors were calculated based on the results of distribution studies in mice, using the OLINDA/EXM program. The cumulated activities in most organs after administration of InVNBL in either the tumor/ascites-bearing mice (protocol A) or the subcutaneous solid tumor-bearing mice (protocol B) were higher than those of ReDXRL. Higher tumor-to-normal-tissues absorption dose ratios (T/NTs) were observed after administration of InVNBL than those of ReDXRL for protocol A. The T/NTs for the liver, spleen, and red marrow after injection of InVNBL for protocol B were similar to those of ReDXRL. The critical organ was found to be red marrow, and thus the red marrow absorption dose defined the recommended maximum administration activity of these liposomal drugs. Characterization of pharmacokinetics and dosimetry is needed to select the appropriate radiotherapeutics for specific tumor treatment applications. The results suggest that InVNBL is a promising therapeutic agent, which is as good as ReDXRL, in two mouse tumor models.


Assuntos
Neoplasias do Colo/radioterapia , Radioisótopos de Índio/farmacologia , Polietilenoglicóis/química , Radioisótopos/farmacologia , Radiometria/métodos , Rênio/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Infusões Parenterais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Distribuição Tecidual
7.
Cancer Biother Radiopharm ; 24(4): 453-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19694580

RESUMO

Nanoliposomes are important drug carriers that can passively target tumor sites by the enhanced permeability and retention (EPR) effect in neoplasm lesions. This study evaluated the biodistribution and pharmacokinetics of 111In-labeled vinorelbine (VNB)-encapsulated PEGylated liposomes (IVNBPL) after intraperitoneal (i.p.) and intravenous (i.v.) administration in a C26/tk-luc colon carcinoma ascites mouse model. IVNBPL was prepared by labeling VNB-encapsulated PEGylated liposomes with 111In-oxine. BALB/c mice were i.p. inoculated with 2 x 10(5) C26/tk-luc cells in 500 muL of phosphate-buffered saline. Peritoneal tumor lesions were confirmed by 124I-FIAU/micro-PET (positron emission tomography) and bioluminescence imaging. Ascites production was examined by ultrasound imaging on day 10 after tumor cell inoculation. The pharmacokinetics and biodistribution studies of IVNBPL in a tumor/ascites mouse model were conducted. The labeling efficiency was more than 90%. The in vitro stability in human plasma at 37 degrees C for 72 hours was 83% +/- 3.5%. For i.p. administration, the areas under curves (AUCs) of ascites and tumor were 6.78- and 1.70-fold higher, whereas the AUCs of normal tissues were lower than those via the i.v. route. This study demonstrates that i.p. administration is a better approach than i.v. injection for IVNBPL, when applied to the treatment of i.p. malignant disease in a tumor/ascites mouse model.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Radioisótopos de Índio , Vimblastina/análogos & derivados , Animais , Ascite/diagnóstico por imagem , Ascite/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Radioisótopos de Índio/farmacocinética , Injeções Intraperitoneais , Injeções Intravenosas , Lipossomos/administração & dosagem , Lipossomos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Vimblastina/administração & dosagem , Vimblastina/farmacocinética , Vinorelbina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA