Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Analyst ; 149(18): 4623-4632, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39101528

RESUMO

The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.


Assuntos
Cloranfenicol , Técnicas Eletroquímicas , Európio , Ouro , Limite de Detecção , Medições Luminescentes , Polímeros , Porfirinas , Európio/química , Cloranfenicol/análise , Cloranfenicol/química , Imunoensaio/métodos , Porfirinas/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Polímeros/química , Contaminação de Alimentos/análise , Antibacterianos/análise , Antibacterianos/química , Compostos de Estanho/química , Animais , Complexos de Coordenação/química
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474272

RESUMO

Cellulose crystallinity is a crucial factor influencing stem strength and, consequently, wheat lodging. However, the genetic dissection of cellulose crystallinity is less reported due to the difficulty of its measurement. In this study, VIS/NIR spectra and cellulose crystallinity were measured for a wheat accession panel with diverse genetic backgrounds. We developed a reliable VIS/NIR model for cellulose crystallinity with a high determination coefficient (R2) (0.95) and residual prediction deviation (RPD) (4.04), enabling the rapid screening of wheat samples. A GWAS of the cellulose crystallinity in 326 wheat accessions revealed 14 significant SNPs and 13 QTLs. Two candidate genes, TraesCS4B03G0029800 and TraesCS5B03G1085500, were identified. In summary, this study establishes an efficient method for the measurement of cellulose crystallinity in wheat stems and provides a genetic basis for enhancing lodging resistance in wheat.


Assuntos
Celulose , Estudo de Associação Genômica Ampla , Triticum/genética , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
3.
Mikrochim Acta ; 189(6): 214, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513500

RESUMO

A competitive electrochemiluminescence immunoassay was established based on the isoluminol-H2O2 (ABEI-H2O2) system catalyzed by cobalt hydroxide (Co(OH)2) to detect florfenicol residues in food. First , ultra-thin two-dimensional Co(OH)2 nanosheets were used as the catalyst of ABEI-H2O2 system, and excellent catalytic effects were acquired by catalytic decomposition of hydrogen peroxide with cobalt ions. Then, bimetal PdAg (Pd/Ag) alloy nanoparticles were used as a bridge to connect ABEI and antibody due to their good biocompatibility; Pd/Ag alloy nanoparticles also had a catalytic effect to further amplify the ECL signal in the system due to the synergistic catalytic effect of the bimetal. A competitive immunoassay strategy was used to detect florfenicol, where the florfenicol in the sample will compete with the antibody for the limited binding sites on the coating antigen. The ECL immunosensor for florfenicol detection shows high sensitivity, with a linear range from 10-4  to 102 ng mL-1, and a detection limit of 3.1 × 10-5 ng mL-1, where the scan potential was varied from 0 to 0.6 V vs Ag/AgCl . This work was the first to use Co(OH)2 nanosheets and bimetal PdAg catalytic signal amplification methods to design the sensor, which provides a novel, convenient and reliable strategy for ultra-sensitive detection of florfenicol, and other biological small molecules. A novel ECL immunosensor based on ABEI-H2O22.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ligas , Técnicas Biossensoriais/métodos , Cobalto/química , Peróxido de Hidrogênio/química , Hidróxidos , Imunoensaio/métodos , Limite de Detecção , Medições Luminescentes/métodos , Luminol/análogos & derivados , Nanopartículas Metálicas/química , Tianfenicol/análogos & derivados
4.
Small ; 17(40): e2008200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496143

RESUMO

The combination of good stability, biocompatibility, and high mechanical strength is attractive for bio-related material applications, but it remains challenging to simultaneously achieve these properties in a single, ionically conductive material. Here a "wood" ionic cable, made of aligned wood nanofibrils, demonstrating a combination of biocompatibility, high mechanical strength, high ionic conductivity, and excellent stability is reported. The wood ionic cable possesses excellent flexibility and exhibits high tensile strength up to 260 MPa (in the dry state) and ≈80 MPa (in the wet state). The nanochannels within the highly aligned cellulose nanofibrils and the presence of negative charges on the surfaces of these nanochannels, originating from the cellulose hydroxyl groups, provide new opportunities for ion regulation at low salt concentrations. Ion regulation in turn enables the wood ionic cable to have unique nanofluidic ionic behaviors. The Na+ ion conductivity of the wood ionic cable can reach up to ≈1.5 × 10-4 S cm-1 at low Na+ ion concentration (1.0 × 10-5 mol L-1 ), which is an order of magnitude higher than that of bulk NaCl solution at the same concentration. The scalable, biocompatible wood ionic cable enables novel ionic device designs for potential ion-regulation applications.


Assuntos
Celulose , Madeira , Hidrogéis , Íons , Resistência à Tração
5.
Biochim Biophys Acta Biomembr ; 1860(8): 1517-1527, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29758185

RESUMO

Linear antimicrobial peptides, with their rapid bactericidal mode of action, are well-suited for development as topical antibacterial drugs. We recently designed a synthetic linear 4-residue peptide, BRBR-NH2, with potent bactericidal activity against Staphylococcus aureus (MIC 6.25 µM), the main causative pathogen of human skin infections with an unknown mechanism of action. Herein, we describe a series of experiments conducted to gain further insights into its mechanism of action involving electron microscopy, artificial membrane dye leakage, solution- and solid-state NMR spectroscopy followed by molecular dynamics simulations. Experimental results point towards a SMART (Soft Membranes Adapt and Respond, also Transiently) mechanism of action, suggesting that the peptide can be developed as a topical antibacterial agent for treating drug-resistant Staphylococcus aureus infections.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Parede Celular/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Parede Celular/química , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular
6.
Mikrochim Acta ; 185(5): 275, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717360

RESUMO

A flower-like Au/Cu alloy nanocomposite (Au/Cu NFs) was synthesized and used in an electrochemiluminescence (ECL) based method for sensitive determination of the dye Sudan I. The Au-g-C3N4 nanosheets as an ECL emitter were prepared by electrostatic adsorption between gold nanoparticles and g-C3N4. They form a film on a glassy carbon electrode (GCE) and then can be connected with Sudan I antigen via gold-nitrogen bond and amidation reactions. The Au/Cu NFs combined with Sudan I antibody also via the Au-N bond and was introduced into the modified GCE by specific recognition between the antibody and the antigen. The overlap between emission spectra of the Au-g-C3N4 nanosheets and absorption spectra of Au/Cu NFs enabled the appearance of ECL resonance energy transfer process. That is, when the Sudan I analyte not present, the ECL was weakened due to absorption by the gray Au/Cu NFs on applying voltages from -1.7 V to 0 V. Conversely, the Au/Cu NFs on the GCE are reduced due to the competition for the antibody between the analyte and the antigen. A strong green ECL emission was obtained. The ECL response is linear in the 0.5 pg mL-1 to 100 ng mL-1 Sudan I concentration range, and the detection limit is 0.17 pg mL-1. Graphical abstract An Au/Cu alloy flower-like nanocomposite (Au/Cu NFs) is firstly synthesized as an acceptor to constitute an electrochemiluminescence-resonance energy transfer (ECL-RET) system for sensitive measurement of Sudan I, while Au nanoparticles (Au NPs) functionalized graphitic carbon nitride (g-C3N4) acted as a donor.


Assuntos
Ligas/química , Ouro/química , Grafite/química , Imunoensaio/métodos , Nanoestruturas/química , Naftóis/análise , Nitrilas/química , Eletroquímica , Análise de Alimentos , Limite de Detecção , Luminescência , Naftóis/química
7.
Luminescence ; 29(7): 784-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24352866

RESUMO

A simple and sensitive electrochemiluminescence (ECL) method for the determination of etamsylate has been developed by coupling an electrochemical flow-through cell with a tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+))-Nafion-modified carbon electrode. It is based on the oxidized Ru(bpy)3(2+) on the electrode surface reacting with etamsylate and producing an excellent ECL signal. Under optimized experimental conditions, the proposed method allows the measurement of etamsylate over the range of 8-1000 ng/mL with a correlation coefficient of r = 0.9997 (n = 7) and a limit of detection of 1.57 ng/mL (3σ), the relative standard deviation (RSD) for 1000 ng/mL etamsylate (n = 7) is 0.96%. The immobilized Ru(bpy)3(2+) carbon paste electrode shows good electrochemical and photochemical stability. This method is rapid, simple, sensitive and has good reproducibility. It has been successfully applied to the determination of the studied etamsylate in pharmaceutical preparations with satisfactory results. The possible ECL reaction mechanism has also been discussed.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Etamsilato/análise , Polímeros de Fluorcarboneto/química , Luminescência , Compostos Organometálicos/química , Técnicas Eletroquímicas/economia , Eletrodos , Compostos Organometálicos/síntese química
8.
Talanta ; 271: 125740, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335847

RESUMO

Developing low-cost and efficient methods to enhance the electrochemiluminescence (ECL) intensity of luminophores is highly desirable and challenging. Herein, we developed an efficient ECL system based on palladium-modified graphene oxide as a substrate and tin dioxide quantum dot-modified spike-like gold-silver alloy as an immunoprobe. Specifically, palladium-modified graphene oxide was rationally selected as the sensor substrate for the attachment of zearalenone antigens while facilitating the amplification of the ECL signal through enhanced electron transfer efficiency. A spike-like gold-silver alloy modified with tin dioxide quantum dots was attached to the zearalenone antibody as an immunoprobe, and the sensor exhibited remarkable sensitivity due to the exceptional ECL performance of the quantum dots. To demonstrate the practical feasibility of the principle, zearalenone levels were detected in actual samples of maize and pig urine, and the sensor showed a broad linear range (0.0005-500 ng mL-1) and low detection limit (0.16 pg mL-1) in the high-sensitivity detection of Zearalenone. Overall, this work first reports the construction of a highly sensitive ECL immunosensor for the detection of zearalenone using a protruding gold-silver alloy modified with tin dioxide as an immunoprobe and a palladium modified graphene oxide as a substrate. It provides a novel approach for the detection of small molecule toxin-like substances.


Assuntos
Técnicas Biossensoriais , Grafite , Pontos Quânticos , Compostos de Estanho , Zearalenona , Animais , Suínos , Pontos Quânticos/química , Paládio , Técnicas Biossensoriais/métodos , Prata , Medições Luminescentes/métodos , Imunoensaio/métodos , Grafite/química , Ouro/química , Ligas , Técnicas Eletroquímicas/métodos , Limite de Detecção
9.
Biomed Pharmacother ; 170: 116076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147738

RESUMO

Diabetes is an epidemic in contemporary society, which seriously affects people's health. Therefore, it is imperative to develop a multifunctional wound dressing that can expedite the healing of diabetic wounds. In this study, quaternized oxidized sodium alginate (QOSA) and carboxymethyl chitosan (CMCS) formed hydrogel through Schiff base reaction, and the composite hydrogel was prepared by adding the antioxidant activity of deer antler blood polypeptide (D). The hydrogel exhibits favorable attributes, including a high swelling ratio, biocompatibility, and noteworthy antioxidant, antibacterial, and hemostatic properties. Finally, it was used to evaluate its effectiveness in repairing diabetic wounds. Upon evaluation, this hydrogel can effectively promote diabetic wound healing. It facilitates cell proliferation at the wound site, mitigates inflammatory responses, and enhances the expression of growth factors at the wound site. This suggests that this hydrogel holds significant promise as an ideal candidate for advanced wound dressings.


Assuntos
Chifres de Veado , Quitosana , Cervos , Diabetes Mellitus , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Peptídeos , Antibacterianos , Antioxidantes
10.
Int J Biol Macromol ; 277(Pt 1): 133728, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019700

RESUMO

Passive radiative cooling material of cellulose by coupling inorganic nanoparticles, have demonstrated competitive advantages in sustainably cooling buildings and constructions due to their voluminous availability, biodegradability, renewability, and natural origin. However, the weak stability of cellulose-inorganic nanoparticle materials when exposed to water or external forces remains a significant challenge that impedes their practical application. In this study, we proposed an easy-to-prepare, scalable, and robust cooling cellulose composite by coupling nano-SiO2 and cellulose acetate (CA) within cellulose fibers, using the mature pulping and paper process (filling of inorganic particles of nano-SiO2 and subsequent sizing of polymer of CA). More importantly, the CA molecules form the strong bonding with the cellulose molecules due to the high similarity of their molecular structure, which makes CA function as a "glue" to effectively fasten nano-SiO2 on the cellulose fibers. Correspondingly, our cellulose composite features desirable robustness and structural stability even undergoing mechanical beating and water-soaking treatments, demonstrating its excellent robustness and desirable adaptability to natural environments, such as wind and rain. As a result, despite undergoing water-soaking (for 40 days) or environmental exposure (for 90 days), the cooling cellulose composite still exhibits excellent solar reflectance (>95 %) and infrared thermal emissivity (>0.95 at 8-13 µm), enabling sub-ambient temperature (∼6.5 °C during daytime and ∼8 °C at nighttime) throughout the day. Our cooling cellulose composite demonstrates promising potential as an environmentally friendly, low-cost, and stable cooling material in our low-carbon society.


Assuntos
Celulose , Dióxido de Silício , Celulose/química , Celulose/análogos & derivados , Dióxido de Silício/química , Nanopartículas/química , Nanocompostos/química , Temperatura
11.
Sci Total Environ ; 912: 169074, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056676

RESUMO

The omnipresence of microplastics (MPs) in potable water has become a major concern due to their potential disruptive effect on human health. Therefore, the effective removal of MPs in drinking water is essential for life preservation. In this study, tap water containing microplastic <10 µm in size was treated using constructed pilot-scale rapid sand filtration (RSF) system to investigate the removal efficiency and the mechanisms involved. The results show that the RSF provides significant capacity for the removal and immobilization of MPs < 10 µm diameter (achieving 98 %). Results showed that silicate sand reacted with MPs through a cooperative assembly process, which mainly involved interception, trapping, entanglement, and adsorption. The MPs were quantified by Flow cytometry instrument. A kinetics study underlined the pivotal role of physio-chemisorption in the removal process. MP particles smaller than absorbents, saturation of adsorbents, and reactor hydrodynamics were identified as limiting factors, which were alleviated by backwashing. Backwashing promoted the desorption of up to 97 % MPs, conducive for adsorbent active site regeneration. These findings revealed the critical role of RSF and the importance of backwashing in removing MPs. Understanding the mechanisms involved in removing microplastics from drinking water is crucial in developing more efficient strategies to eliminate them.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Adsorção , Microplásticos , Plásticos , Areia
12.
Int J Biol Macromol ; 268(Pt 2): 131945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685544

RESUMO

Hydroxypropyl cellulose (HPC) is a green thermochromic material in energy-saving buildings, anti-counterfeiting, and data security fields. However, the high lower critical solution temperature (LCST) of HPC, around 42 °C (higher than the human thermal comfort temperature), limits its thermochromic sensitivity, poor stability, and short lifespan. Herein, we developed a durable, high-performance cellulose-based thermochromic composite with a lower LCST and easy preparation capability by combining HPC with sodium carboxymethyl cellulose (CMC). In such thermochromic cellulose, CMC constructs a hydrophilic skeleton to enable uniform dispersion of HPC, and functions as a stronger competitor to attract the water molecules compared to HPC, both of which trigger high thermochromic sensitivity and low LCST (just 32.5 °C) of our CMC/HPC. In addition, CMC/HPC shows superior stability, such as 100-day working capability and 60-time recyclability. This advancement marks a significant step forward in creating sustainable, efficient thermochromic materials, offering new opportunities for energy conservation in the building.


Assuntos
Carboximetilcelulose Sódica , Celulose , Temperatura , Carboximetilcelulose Sódica/química , Celulose/química , Celulose/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas
13.
J Hazard Mater ; 442: 130012, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182889

RESUMO

Nanoplastics (NPs) have become an emerging global environmental problem, and the toxicity of polystyrene nanoplastics (PS-NPs) in rice plants has received widespread attention. However, few studies have focused on silicon (Si)-mediated interactions between PS-NPs and rice. Thus, two forms of Si (organosilicon/inorganic silica) treated rice cells were exposure of positively or negatively charged NPs, PS-NH2 and PS-COOH, to evaluate the effects of Si for defense against PS-NPs toxicity in rice. The result showed PS-NH2 nanoparticles were accumulated at relatively low levels in cells compared with that of PS-COOH, but induced a higher accumulation of hydrogen peroxide (H2O2) and superoxide radicals (O2•-). However, both organosilicon and inorganic silica can generate more negative potential on the surfaces of cell wall to absorb large numbers of positively charged PS-NH2. In addition, they can prevent the uptake of both PS-NH2 and PS-COOH through reducing the porosity on the surface of the cell walls. These finally alleviated the toxicity of oxidative stress caused by PS-NPs and improved the viability of rice cells. Our findings demonstrated the significant contribution of Si in combating PS-NPs in rice.


Assuntos
Nanopartículas , Oryza , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos , Peróxido de Hidrogênio , Dióxido de Silício , Silício/farmacologia , Superóxidos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade
14.
Int J Biol Macromol ; 226: 833-839, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36521706

RESUMO

Forward osmosis (FO) technology exhibits great potential in seawater desalination and wastewater treatment due to its negligible energy consumption and high antifouling, however, the weak desalination capability, especially low water flux, remains challenging. Herein, a cost-effective and high-desalination-performance chitosan (CS)-based FO membrane is developed via coupling the electrospinning CS nanofibers and interfacial-polymerized polyamide (PA). The electrospun nanofibers construct the porous and hydrophilic CS layer with the large pore-diameter of ~274 nm and low thickness of ~10 µm, enabling the effective transport of water molecules, specifically, a superhigh water flux of 107.53 LMH at a low salt-water ratio of 0.24 g·L-1. In addition, such superior desalination performance of the as-prepared FO membrane is universal for the various salt species and concentrations. Our CS nanofiber-based membrane with the high separation capability of water-salt, desirable antibacterial activity, as well as the low cost, offers a roadmap toward the sustainable membrane materials.


Assuntos
Quitosana , Nanofibras , Purificação da Água , Água , Membranas Artificiais , Osmose
15.
Int J Biol Macromol ; 245: 125580, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379941

RESUMO

Polymers obtained from biomass are a concerning alternative to petro-based polymers because of their low cost of manufacturing, biocompatibility, ecofriendly and biodegradability. Lignin as the second richest and the only polyaromatics bio-polymer in plant which has been most studied for the numerous applications in different fields. But, in the past decade, the exploitation of lignin for the preparation of new smart materials with improved properties has been broadly sought, because lignin valorization plays one of the primary challenging issues of the pulp and paper industry and lignocellulosic biorefinery. Although, well suited chemical structure of lignin comprises of many functional hydrophilic and active groups, such as phenolic hydroxyls, carboxyls and methoxyls, which provides a great potential to be applied in the preparation of biodegradable hydrogels. In this review, lignin hydrogel is covered with preparation strategies, properties and applications. This review reports some important properties, such as mechanical, adhesive, self-healing, conductive, antibacterial and antifreezing properties were then discussed. Furthermore, herein also reviewed the current applications of lignin hydrogel, including dye adsorption, smart materials for stimuli sensitive, wearable electronics for biomedical applications and flexible supercapacitors. Overall, this review covers recent progresses regarding lignin-based hydrogel and constitutes a timely review of this promising material.


Assuntos
Lignina , Materiais Inteligentes , Lignina/química , Hidrogéis/química , Polímeros/química , Adsorção
16.
Carbohydr Polym ; 291: 119601, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698404

RESUMO

Membranes are the dominant material for seawater desalination and clean-water harvesting, which are commonly composed of synthetic polymers, showing low hydrophilicity and environmental hazard. Herein, we developed a low-cost, intrinsically green, superhigh-water flux Janus cellulose membrane (CEM) via a facile cellulase etching strategy. Coating cellulase on the single surface of cellulose membrane (such as top surface), triggers effective etching on its top section rather than bottom section, which architects an asymmetric-pore structure of the Janus CEM including porous top-and dense bottom-layer. Such distinction endows the Janus CEM with an unprecedented high-water flux of 135.75 LMH and a low salt-water ratio of 0.29 g·L-1 for 1 M NaCl solution, which is 17-time higher and 62-time lower than that of the pristine CEM. Our Janus CEM enables a promising participant for the advanced membrane materials toward versatile separation engineering.


Assuntos
Celulases , Purificação da Água , Celulose/química , Humanos , Membranas Artificiais , Osmose , Água/química
17.
BMJ Open ; 11(10): e049104, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697111

RESUMO

INTRODUCTION: Combination antiviral therapy of nucleos(t)ide analogue (NA) and pegylated interferon alpha (peg-IFN alpha) decrease hepatitis B virus (HBV) surface antigen (HBsAg) levels to achieve functional cure and improve long-term prognosis in chronic hepatitis B patients. However, for hepatitis B-related liver fibrosis, studies on combination of these two medicines are limited. This study was designed to compare the efficacy between peg-IFN alpha combined with tenofovir (TDF) and TDF monotherapy for the clearance of HBsAg in NA-experienced patients with HBV-related liver fibrosis. METHODS AND ANALYSIS: This study was designed to be a prospective, multicentre, open, randomised controlled study. A total of 272 patients with HBV-related liver fibrosis will be randomised into the combination therapy group or the monotherapy group at a 1:1 ratio. Participants in the combination group will receive subcutaneous injections of peg-IFN alpha 180 µg per week for 48 weeks combined with oral TDF 300 mg daily. Participants in the monotherapy group will receive 300 mg oral TDF daily alone. All participants will undergo long-term treatment with TDF and will be followed up at the outpatient department for 144 weeks after randomisation. Clinical symptoms, laboratory tests and examination indicators will be collected at each follow-up time point, and adverse events will be recorded. The primary endpoint is serological clearance rate of HBsAg at 48 weeks. ETHICS AND DISSEMINATION: The ethics committee of the Third Affiliated Hospital at Sun Yat-sen University approved this study (Approval Number: (2020)02-183-01). The results of the study will be presented at relevant meetings and published in an appropriate journal after the completion of the trial and the analysis of the data. TRIAL REGISTRATION NUMBER: NCT04640129.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Antivirais/uso terapêutico , DNA Viral , Quimioterapia Combinada , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Interferon-alfa/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Estudos Multicêntricos como Assunto , Polietilenoglicóis/uso terapêutico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tenofovir/uso terapêutico , Resultado do Tratamento
18.
Carbohydr Polym ; 260: 117820, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712163

RESUMO

A high-performance flexible conductive substrate is one of the key components for developing promising wearable devices. Concerning this, a sustainable, flexible, transparent, and conductive cellulose/ZnO/AZO (CZA) film was developed in this study. The cellulose was used as the transparent substrate. The added AZO was as the conductive layer and ZnO functioned as an interface buffer layer. Results showed that the interface buffer layer of ZnO effectively alleviated the intrinsic incompatibility of organic cellulose and inorganic AZO, resulting in the improvement of the performance of CZA film. In compared with the controlled cellulose/AZO (CA) film with 365 Ω/sq sheet resistance and 87% transmittance, this CZA film featured a low conductive sheet resistance of 115 Ω/sq and high transmittance of 89%, as well as low roughness of 1.85 nm Moreover, the existence of conducive ZnO buffer layer enabled the conductivity of CZA film to be stable under the bending treatment. Herein, a flexible electronic device was successfully prepared with the biomass materials, which would be available by a roll-to-roll production process.


Assuntos
Celulose/química , Eletrônica , Alumínio/química , Condutividade Elétrica , Óxido de Zinco/química
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(2): 338-41, 2009 Apr.
Artigo em Zh | MEDLINE | ID: mdl-19499798

RESUMO

Biodegradable magnesium-alloy stents have been employed in animal experiments and clinical researches in recent years. Magnesium-alloy stents have been reported to be biocompatible, and degradable due to corrosion after being implanted into blood vessel. However, magnesium alloy is brittle compared with stainless steel. This may cause strut break under large deformation. In this paper, a finite element model of magnesium-alloy stent was set up, with reference to pictures from Biotronik Corporation, to simulate the expanding and bending processes. The results of analysis show that the maximum strain during expanding reaches 20%, being greater than the elongation limit of the commercially available magnesium alloys. Therefore, to avoid strut breakage during expanding, the magnesium alloys should be custom-made. The plasticity of the material should be improved by grain refinement processes before practicable magnesium-alloy stents could be developed.


Assuntos
Implantes Absorvíveis , Angioplastia Coronária com Balão/instrumentação , Magnésio , Stents , Estresse Mecânico , Ligas , Análise de Elementos Finitos , Humanos , Teste de Materiais , Desenho de Prótese , Propriedades de Superfície
20.
Talanta ; 193: 184-191, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368289

RESUMO

Diclofenac (DCF) is among the pharmaceutical compounds of concern based on its nocuousness in environment. In this work, a novel electrochemiluminescent (ECL) immunosensor for detecting DCF was constructed using poly(etherimide)-poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) functionalized graphene oxide and CdSe@CdS quantum dots (QDs-PEI-GO/PEDOT) as bioreceptor for conjugating DCF antibody to magnify signal. It is worth noting that this is the first time GO/PEDOT has been applied to ECL sensor field. Compared with GO, GO/PEDOT exhibited a higher conductivity and more stable chemical property, indicating that the proposed immunosensor would possess stronger and more stable luminescence performance. In addition, the electrode was modified with gold nanorods (AuNRs) which increase the load capacity of DCF coating antigen through Au-N bond. Competitive immunoassay method was chosen for structuring immunosensor where polyclonal antibody (pAb) against DCF exhibited high-affinity recognition of DCF, which greatly improved the sensitively and selectivity of sensor. Consequently, the proposed immunosensor gratified in DCF detection with low detection limit (LODs) of 0.33 pg mL-1 (S/N = 3), and displayed high stability and sensitivity, which initiated a new route for DCF determining.


Assuntos
Diclofenaco/análise , Ouro/química , Grafite/química , Imunoensaio/métodos , Nanotubos/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Diclofenaco/imunologia , Técnicas Eletroquímicas/métodos , Limite de Detecção , Medições Luminescentes/métodos , Nanocompostos/química , Óxidos/química , Polímeros/síntese química , Polímeros/química , Poliestirenos/síntese química , Poliestirenos/química , Pontos Quânticos/química , Coelhos , Reprodutibilidade dos Testes , Tiofenos/síntese química , Tiofenos/química , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA