Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 15(8): 1704-1715, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724947

RESUMO

Peptide-based hydrogels have been proven to be preeminent biomedical materials due to their high water content, tunable mechanical stability, great biocompatibility and excellent injectability. The ability of peptide-based hydrogels to provide extracellular matrix-mimicking environments opens up opportunities for their biomedical applications in fields such as drug delivery, tissue engineering, and wound healing. In this review, we first describe several methods commonly used for the fabrication of robust peptide-based hydrogels, including spontaneous hydrogelation, enzyme-controlled hydrogelation and cross-linking-enhanced hydrogelation. We then introduce some representative studies on their applications in drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering. We hope that this review facilitates the advances of hydrogels in biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Peptídeos/química , Humanos
2.
Biomater Sci ; 9(3): 774-779, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33201168

RESUMO

The whole is a collection of parts and fulfills specific functions that the parts do not have. In this work, 50 nm Au NPs were in situ synthesized and close packed into a superorganism-like superstructure by means of microgel 3D networks. The combined microgel is endowed with ultra-wide absorption in visible and near-infrared regions between 500 and 1100 nm in spite of Au NPs not having this property. The strong collective plasmon coupling between neighboring Au NPs induces high photothermal conversion efficiency of the microgel system under irradiation at various laser wavelengths. Due to the good loading capability, microgels with nanocomposites can also load photosensitive drugs simultaneously and be used for combined cancer treatments of photothermal therapy and photodynamic therapy.


Assuntos
Microgéis , Nanocompostos , Neoplasias , Fotoquimioterapia , Ouro , Humanos , Lasers , Neoplasias/terapia
3.
ACS Appl Mater Interfaces ; 12(19): 21433-21440, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32319760

RESUMO

Dipeptide self-assembled hydrogels have potential biomedical applications because of their great biocompatibility, bioactivity, and tunable physicochemical properties, which can be modulated in the molecular level by design of amino acid sequences. Herein, a series of dipeptides (Fmoc-FL, -YL, -LL, and -YA) are designed to form shear-thinning hydrogels with self-healing and tunable mechanical properties by adjusting the synergetic effect of hydrophobic interactions (π-π stacking and hydrophobic effect) and hydrogen bonds of peptides through substitution of amino acid residues. The enhancement of hydrophobic interactions is a primary factor to promote mechanical rigidity of hydrogels, and strong hydrogen-bonding interactions between molecules contribute to the instantaneous self-healing property, which is supported by experimental studies (FTIR, CD, SEM, AFM, and rheology) and molecular dynamics simulations. The injectable dipeptide hydrogels were certified as an ideal endoscopic submucosal dissection filler to make operation convenient and secure in mice and living mini-pig's experiments with a longer duration time, higher stiffness, and lower inflammatory response than commercial clinical fillers.


Assuntos
Materiais Biocompatíveis/química , Dipeptídeos/química , Hidrogéis/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/farmacologia , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Ressecção Endoscópica de Mucosa/instrumentação , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Inflamação/prevenção & controle , Injeções , Masculino , Fenômenos Mecânicos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Reologia , Estômago/cirurgia , Suínos , Porco Miniatura
4.
ACS Nano ; 12(2): 1455-1461, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29361225

RESUMO

Plant thylakoids have a typical stacking structure, which is the site of photosynthesis, including light-harvesting, water-splitting, and adenosine triphosphate (ATP) production. This stacking structure plays a key role in exchange of substances with extremely high efficiency and minimum energy consumption through photosynthesis. Herein we report an artificially designed honeycomb multilayer for photophosphorylation. To mimic the natural thylakoid stacking structure, the multilayered photosystem II (PSII)-ATP synthase-liposome system is fabricated via layer-by-layer (LbL) assembly, allowing the three-dimensional distributions of PSII and ATP synthase. Under light illumination, PSII splits water into protons and generates a proton gradient for ATP synthase to produce ATP. Moreover, it is found that the ATP production is extremely associated with the numbers of PSII layers. With such a multilayer structure assembled via LbL, one can better understand the mechanism of PSII and ATP synthase integrated in one system, mimicking the photosynthetic grana structure. On the other hand, such an assembled system can be considered to improve the photophosphorylation.


Assuntos
Trifosfato de Adenosina/metabolismo , Materiais Biomiméticos/metabolismo , Lipossomos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo , Materiais Biomiméticos/química , Lipossomos/química , ATPases Mitocondriais Próton-Translocadoras/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fotofosforilação , Complexo de Proteína do Fotossistema II/química , Plantas/química , Prótons , Tilacoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA