Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Molecules ; 28(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446650

RESUMO

Hydrogels made from proteins are attractive materials for diverse medical applications, as they are biocompatible, biodegradable, and amenable to chemical and biological modifications. Recent advances in protein engineering, synthetic biology, and material science have enabled the fine-tuning of protein sequences, hydrogel structures, and hydrogel mechanical properties, allowing for a broad range of biomedical applications using protein hydrogels. This article reviews recent progresses on protein hydrogels with special focus on those made of microbially produced proteins. We discuss different hydrogel formation strategies and their associated hydrogel properties. We also review various biomedical applications, categorized by the origin of protein sequences. Lastly, current challenges and future opportunities in engineering protein-based hydrogels are discussed. We hope this review will inspire new ideas in material innovation, leading to advanced protein hydrogels with desirable properties for a wide range of biomedical applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/química , Hidrogéis/química , Proteínas , Engenharia Tecidual
2.
Clin Transl Gastroenterol ; 15(6): e1, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713137

RESUMO

INTRODUCTION: Constipation is an independent risk factor for poor bowel preparation. This study aimed to evaluate the bowel cleansing efficacy and safety of polyethylene glycol (PEG) combined with linaclotide (lin) for colonoscopy in patients with chronic constipation (CC). METHODS: This single-blinded, randomized, controlled, and multicenter study was conducted from July 2021 to December 2022 at 7 hospitals. Patients with CC who underwent colonoscopies were enrolled and randomly assigned to 4 groups with split-PEG regimens: 4L-PEG group, 4L-PEG+1d-Lin group, 3L-PEG+1d-Lin group, and 3L-PEG+3d-Lin group. The primary outcome was rates of adequate bowel preparation, defined as a total BBPS score ≥6 and a score ≥2 for each segment. Secondary outcomes were adverse effects, sleep quality, willingness to repeat the colonoscopy, adenoma detection rate, and polyp detection rate. RESULTS: Five hundred two patients were enrolled. The rates of adequate bowel preparation (80.0% vs 60.3%, P < 0.001; 84.4% vs 60.3%, P < 0.001) and the total Boston Bowel Preparation Scale (BBPS) scores (6.90 ± 1.28 vs 6.00 ± 1.61, P < 0.001; 7.03 ± 1.24 vs 6.00 ± 1.61, P < 0.01) in the 4L-PEG+1d-Lin group and the 3L-PEG+3d-Lin group were superior to that in the 4L-PEG group. Compared with the 4L-PEG group, the 4L-PEG+1d-Lin group (66.7% vs 81.7%, P = 0.008) and the 3L-PEG+3d-Lin group (75.0% vs 81.7%, P = 0.224) had a lower percentage of mild adverse events. No statistically significant difference in willingness to repeat the colonoscopy, sleep quality, polyp detection rate, or adenoma detection rate was observed among groups. DISCUSSION: PEG combined with linaclotide might be an effective method for bowel preparation before colonoscopy in patients with CC.


Assuntos
Catárticos , Colonoscopia , Constipação Intestinal , Polietilenoglicóis , Humanos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Masculino , Feminino , Constipação Intestinal/diagnóstico , Pessoa de Meia-Idade , Método Simples-Cego , Catárticos/administração & dosagem , Catárticos/efeitos adversos , Doença Crônica , Idoso , Adulto , Peptídeos/administração & dosagem , Peptídeos/efeitos adversos , Pós , Resultado do Tratamento , Eletrólitos/administração & dosagem , Eletrólitos/efeitos adversos
3.
Nat Commun ; 14(1): 2127, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059716

RESUMO

Microbially-synthesized protein-based materials are attractive replacements for petroleum-derived synthetic polymers. However, the high molecular weight, high repetitiveness, and highly-biased amino acid composition of high-performance protein-based materials have restricted their production and widespread use. Here we present a general strategy for enhancing both strength and toughness of low-molecular-weight protein-based materials by fusing intrinsically-disordered mussel foot protein fragments to their termini, thereby promoting end-to-end protein-protein interactions. We demonstrate that fibers of a ~60 kDa bi-terminally fused amyloid-silk protein exhibit ultimate tensile strength up to 481 ± 31 MPa and toughness of 179 ± 39 MJ*m-3, while achieving a high titer of 8.0 ± 0.70 g/L by bioreactor production. We show that bi-terminal fusion of Mfp5 fragments significantly enhances the alignment of ß-nanocrystals, and intermolecular interactions are promoted by cation-π and π-π interactions between terminal fragments. Our approach highlights the advantage of self-interacting intrinsically-disordered proteins in enhancing material mechanical properties and can be applied to a wide range of protein-based materials.


Assuntos
Bivalves , Proteínas Intrinsicamente Desordenadas , Nanopartículas , Animais , Seda/química , Polímeros , Resistência à Tração
4.
Colloids Surf B Biointerfaces ; 218: 112798, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030726

RESUMO

Magnesium (Mg) alloys are potential materials for orthopedic fixation devices but rapid degradation of the materials restricts wider clinical applications. Herein, zinc-incorporated calcium phosphate (Ca-Zn-P) coatings are prepared on the Zn-pretreated WE43 Mg alloy by a hydrothermal technique under relatively stable and favorable conditions. The hydrothermal coating consists of a compact bottom layer of CaZn2(PO4)2∙2 H2O and ZnO granular crystals and a jagged upper layer of CaHPO4. The Zn coating reduces the corrosion current density of WE43 to (3.49 ± 1.60) × 10-5 A cm-2, whereas the Ca-Zn-P/Zn composite coating further reduces it by 3 orders of magnitude in the simulated body fluid (SBF). The charge transfer resistances of the Zn-coated and Ca-Zn-P/Zn-coated alloys increase by 49 and 7176 times to 835 and 1.22 × 105 Ω cm2, respectively. The 7-day immersion results reveal that the Zn coating cannot provide long-term protection to WE43 in SBF because of the formation of galvanic couples between the Zn coating and WE43. In contrast, Ca-Zn-P/Zn-coated WE43 remains intact after soaking for 7 days and furthermore, the Ca-Zn-P coating self-repairs and continues to grow despite dissolution. The compact and adherent Ca-Zn-P bottom layer plays a major role in mitigating corrosion of WE43 by hindering penetration of the aggressive medium and charge transfer of the corrosion reactions resulting in only slight corrosion of the Zn layer. Biologically, the Zn coating reduces attachment and proliferation of MC3T3-E1 pre-osteoblasts on WE43, but the composite coating fosters cell adhesion and proliferation which stems from the good biocompatibility of the hydrothermal layer and relatively stable surface conditions avoiding severe corrosion.


Assuntos
Magnésio , Óxido de Zinco , Ligas/química , Ligas/farmacologia , Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Magnésio/química , Magnésio/farmacologia , Teste de Materiais , Zinco/química , Zinco/farmacologia
5.
Nat Commun ; 12(1): 5182, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462443

RESUMO

Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.


Assuntos
Conectina/química , Conectina/genética , Escherichia coli/metabolismo , Fibras Musculares Esqueléticas/química , Animais , Fenômenos Biomecânicos , Conectina/metabolismo , Cristalização , Escherichia coli/genética , Expressão Gênica , Peso Molecular , Fibras Musculares Esqueléticas/metabolismo , Polimerização , Polímeros/química , Polímeros/metabolismo , Dobramento de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA