Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 187(2): 900-916, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608957

RESUMO

Woody bamboo is environmentally friendly, abundant, and an alternative to conventional timber. Degree of lignification and lignin content and deposition affect timber properties. However, the lignification regulatory network in monocots is poorly understood. To elucidate the regulatory mechanism of lignification in moso bamboo (Phyllostachys edulis), we conducted integrated analyses using transcriptome, small RNA, and degradome sequencing followed by experimental verification. The lignification degree and lignin content increased with increased bamboo shoot height, whereas phenylalanine ammonia-lyase and Laccase activities first increased and then decreased with shoot growth. Moreover, we identified 11,504 differentially expressed genes (DEGs) in different portions of the 13th internodes of different height shoots; most DEGs associated with cell wall and lignin biosynthesis were upregulated, whereas some DEGs related to cell growth were downregulated. We identified a total of 1,502 miRNAs, of which 687 were differentially expressed. Additionally, in silico and degradome analyses indicated that 5,756 genes were targeted by 691 miRNAs. We constructed a regulatory network of lignification, including 11 miRNAs, 22 transcription factors, and 36 enzyme genes, in moso bamboo. Furthermore, PeLAC20 overexpression increased lignin content in transgenic Arabidopsis (Arabidopsis thaliana) plants. Finally, we proposed a reliable miRNA-mediated "MYB-PeLAC20" module for lignin monomer polymerization. Our findings provide definite insights into the genetic regulation of bamboo lignification. In addition to providing a platform for understanding related mechanisms in other monocots, these insights could be used to develop strategies to improve bamboo timber properties.


Assuntos
Redes Reguladoras de Genes , Lignina/fisiologia , MicroRNAs/genética , Brotos de Planta/fisiologia , Poaceae/fisiologia , RNA de Plantas/genética , Poaceae/genética , Transcriptoma
2.
Plant Cell Rep ; 39(6): 751-763, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32152695

RESUMO

KEY MESSAGE: Twenty-three PeLACs have been identified in moso bamboo, overexpression of PeLAC10 increases the lignin content and confers drought and phenolic acid tolerance in transgenic Arabidopsis. Laccases (LACs) have multifunction involved in the processes of cell elongation, lignification and stress response in plants. However, the function of laccases in bamboo remain unclear. Here, a total of 23 laccase genes (PeLAC1-PeLAC23) were identified in moso bamboo (Phyllostachys edulis). The diverse gene structure and expression pattern of PeLACs suggested that their function should be spatiotemporal and complicated, which was supported by the expression profiles in different tissues of moso bamboo. Eighteen PeLACs were identified as the targets of ped-miR397. The putative ped-miR397-binding site in the coding region of PeLAC10 was further confirmed by RLM-5' RACE, indicating that PeLAC10 was regulated by ped-miR397 after transcription. With the increasing shoot height, the expression abundance of PeLAC10 was up-regulated and reached the maximum in 15 cm shoots, while that of ped-miR397 was relative lower and showed the minimum in 15 cm shoots. PeLAC10 was up-regulated obviously under both ABA (100 µmol L-1) and NaCl (400 mmol L-1) treatments, and it was down-regulated under the GA3 (100 µmol L-1) treatment. The transgenic Arabidopsis plants over-expressing PeLAC10 became slightly smaller and their petioles were shorter than those of Col-0. However, they had a stronger capacity in resistance to phenolic acids and drought besides higher lignin content in stems. These results indicated that overexpression of PeLAC10 was helpful to increase the content of lignin in transgenic Arabidopsis and improve the adaptability to phenolic acid and drought stresses.


Assuntos
Lacase/genética , Lacase/metabolismo , Lignina/biossíntese , Poaceae/genética , Poaceae/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/genética , Sítios de Ligação , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hidroxibenzoatos/farmacologia , Lignina/genética , MicroRNAs , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Análise de Sequência , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma
3.
Gigascience ; 7(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202850

RESUMO

Background: Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies. Results: Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo. Conclusions: These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


Assuntos
Processamento Alternativo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poaceae/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA