Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129574, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246464

RESUMO

In order to explore the influence of wood types on formation of polycyclic aromatic hydrocarbons (PAHs) in traditional smoked and grilled meat products, the effect of lignin in woods on formation of PAHs was investigated in meat model systems. The results showed that PAHs formation was much dependent on the heating conditions. The addition of lignin led to significantly increased PAHs, which being connected with lignin structure. In comparison, the formation of PAHs was more facilitated by lignin with G structure than that with G/S structure. However, further study of adding lignin precursors demonstrated that lignin precursors with S structure were more favorable to the formation of PAHs than those with G structure. It was proposed that the relative content and activity of G/S structure of lignin in wood played a significant role in the formation of PAHs, which might provide theoretical reference for inhibition of PAHs fundamentally.


Assuntos
Produtos da Carne , Hidrocarbonetos Policíclicos Aromáticos , Produtos da Carne/análise , Lignina , Culinária/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumaça , Carne/análise
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120456, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653807

RESUMO

The consumption of food infected with food-borne pathogens has become a global public health problem. Therefore, it is monitor food-borne infections to avoid health and financial consequences. The rapid detection and differentiation of bacteria for biomedical and food safety applications continues to be a significant challenge. Herein, we present a label-free surface-enhanced Raman scattering approach for separating harmful bacteria from food. The method relies on the ascorbic acid reduction method to synthesize silver nanoparticles (AgNPs) and a polydimethylsiloxane (PDMS) multi-hole filter membrane chip (AgNPs@PDMS multi-hole filter membrane chip). Surface-enhanced Raman spectroscopy (SERS) was used, followed by multivariate statistical analysis to differentiate five important food-borne pathogens, including Staphylococcus aureus, Salmonella typhimurium, Listeria monocytogenes, Clostridium difficiles and Clostridium perfringens. The results demonstrated that compared to normal Raman signals, the intensity of the SERS signal was greatly enhanced with an analytical enhancement factor of 5.2 × 103. The spectral ranges of 400-1800 cm-1 were analyzed using principal component analysis (PCA) and stepwise linear discriminant analysis (SWLDA) were used to determine the optimal parameters for the discrimination of food-borne pathogens. The first three principal components (PC1, PC2, and PC3) accounted for 87.3% of the total variance in the spectra. The established SWLDA model had 100% accuracy and cross-validation accuracy, which accurately distinguished the SERS spectra of the five species. In conclusion, the SERS technology based on the AgNPs@PDMS multi-hole filter membrane chip was useful for the rapid identification of food-borne pathogens and can be employed for food quality management.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Dimetilpolisiloxanos , Análise Discriminante , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA