Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 11(22): 7311-7326, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37847519

RESUMO

Rosin is a characteristic natural renewable resource. In view of the unique hydrogenated phenanthrene ring skeleton structure of rosin, it can be designed and synthesized to modify silicone rubber for improving its mechanical properties, thermal stability, and other properties. In this paper, the research progress of silicone rubber modified by rosin and its derivatives is reviewed, including internal or surface modification of room temperature or high temperature vulcanized silicone rubber. The different chemical modifications and polymerization pathways to obtain bio-based silicone rubber (e.g. rosin-based silicone cross-linking agent, filler compound rosin-based silicone cross-linking agent, rosin-based polymer, and rosin quaternary ammonium salt bifunctional antibacterial coating) are discussed and its research prospect is reviewed. Overall, the present review article will provide a quantitative experimental basis for rosin to produce bio-renewable multifunctional silicone rubber to increase our level of understanding of the behavior of this important class of silicone rubber and other similar bio-based polymers.


Assuntos
Resinas Vegetais , Elastômeros de Silicone , Elastômeros de Silicone/química , Resinas Vegetais/química , Antibacterianos , Polímeros/química
2.
J Agric Food Chem ; 65(17): 3497-3504, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28418657

RESUMO

An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.


Assuntos
Celulose/análogos & derivados , Óleo de Soja/química , Água/química , Celulose/química , Emulsões/química , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA