Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 12(48): 6753-6766, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677919

RESUMO

Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI25K /pTP53, and PCS10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes.


Assuntos
Técnicas de Transferência de Genes , Nanotubos de Carbono/química , DNA/genética , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Polietilenoimina/química , Transfecção
2.
Nat Nanotechnol ; 18(6): 647-656, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081080

RESUMO

Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow-blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow-blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.


Assuntos
Nanopartículas , Osteoporose , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neutrófilos , Ácido Láctico/uso terapêutico , Ácido Poliglicólico/uso terapêutico , Medula Óssea , Osteoporose/tratamento farmacológico
3.
J Control Release ; 341: 769-781, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952044

RESUMO

As a research hotspot, immune checkpoint inhibitors (ICIs) is often combined with other therapeutics in order to exert better clinical efficacy. To date, extensive laboratory and clinical investigations into the combination of ICIs and chemotherapy have been carried out, demonstrating augmented effectiveness and broad application prospects in anti-tumor therapy. However, the administration of these two treatment modalities is usually randomized or fixed to a given chronological order. Nevertheless, the pharmacological effect of drug is closely related to its exposure behavior in vivo, which may consequently affect the synergistic outcomes of a combined therapy. In this study, we prepared a lipid nanoparticle encapsulating docetaxel (DTX-VNS), and associated it with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) for the treatment of malignant tumors. To identify the optimum timing and sequencing for chemotherapy and immunotherapy, we designed three administration regimes, including the simultaneous delivery of DTX-VNS and αPD-1(DTX-VNS@αPD-1), DTX-VNS delivery before (DTX-VNS plus αPD-1) or post (αPD-1 plus DTX-VNS) PD-1 blockade with an interval of two days. Analysis from mass spectrometry, multi-factor detection and other techniques indicated that DTX-VNS plus αPD-1 initiated a powerful anti-tumor response in multiple tumor models, contributing to a remarkably reshaped tumor microenvironment landscape, which may attribute to the maximum therapeutic additive effects arise from a concomitant exposure of DTX-VNS and αPD-1 at the tumor site. By profiling the exposure kinetics of nanoparticles and αPD-1 in vivo, we defined the administration schedule with utmost therapeutic benefits, which may provide a valuable clinical reference for the rational administration of immunochemotherapy.


Assuntos
Imunoterapia , Nanopartículas , Linhagem Celular Tumoral , Lipossomos , Nanopartículas/química
4.
Theranostics ; 8(11): 3059-3073, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896302

RESUMO

Recently, nano-sized ultrasound contrast agents encapsulating drugs for cancer diagnosis and therapy have attracted much attention. However, the ultrasound signal of these agents is too weak to obtain an ideal ultrasound imaging effect. Furthermore, conventional ultrasound contrast agents with strong echo signal are not suitable for drug delivery against cancer because of their large size. To circumvent this problem, phase-transition ultrasound contrast agents are believed to be an excellent choice. Methods: Liposomes co-encapsulating doxorubicin (DOX), hollow gold nanospheres (HAuNS), and perfluorocarbon (PFC) were synthesized by film dispersion method. The morphology, particle size, and stability of these liposomes (DHPL) were investigated. The photothermal effect, drug release, particle size change, cytotoxicity, and ultrasound imaging were studied by using the near infrared (NIR) light. Furthermore, tumor accumulation of DHPL was observed by in vivo fluorescence imaging and the antitumor effect was verified in a 4T1 tumor model. Results: The nanosystem displayed a homogeneous size distribution (~200 nm) and an efficient light-to-heat conversion effect under 808 nm NIR laser irradiation. The nanometer size enabled considerable accumulation of DHPL in the tumor sites. The localized hyperthermia resulting from the photothermal effect of HAuNS could trigger the size transformation of DHPL followed by significant DOX release. Due to the gasification of PFC, a remarkably enhanced ultrasound signal was detected. DHPL also exhibited a prominent photothermally reinforced chemotherapeutic effect under the control of NIR light both in vitro and in vivo. Importantly, no systemic toxicity was observed by DHPL treatment. Conclusion: In this study, we fabricated multi-functional perfluorocarbon liposomes for ultrasound imaging-guided photothermal chemotherapy which have the potential to serve as a prospective cancer treatment approach.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanosferas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Fluorocarbonos/química , Ouro/química , Humanos , Raios Infravermelhos , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Tamanho da Partícula , Temperatura , Ultrassonografia
5.
Drug Deliv ; 25(1): 585-599, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29461122

RESUMO

Photosensitizer, proper laser irradiation, and oxygen are essential components for effective photodynamic therapy (PDT) in clinical cancer therapy. However, native hypoxic tumoral microenvironment is a major barrier hindering photodynamic reactions in vivo. Thus, we have prepared biocompatible liposomes by loading complexes of oxygen-carrier (hemoglobin, Hb) and photosensitizer (indocyanine green, ICG) for enhanced PDT against hypoxic tumor. Ideal oxygen donor Hb, which is an oxygen-carried protein in red blood cells, makes such liposome which provide stable oxygen supply. ICG, as a photosensitizer, could transfer energy from lasers to oxygen to generate cytotoxic reactive oxygen species (ROS) for treatment. The liposomes loading ICG and Hb (LIH) exhibited efficient tumor homing upon intravenous injection. As revealed by T2-weighted magnetic resonance imaging and immunohistochemical analysis, the intratumoral hypoxia was greatly alleviated, and the level of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in tumor was obviously down-regulated. A weak PDT efficiency was found in cells incubated in simulated hypoxia condition in vitro, while PDT effect was dramatically enhanced in LIH treated hypoxia cells under near-infrared (NIR) laser, which was mainly attributed to massive generation of ROS with sufficient oxygen supply. ROS trigger oxidative damage of tumors and induce complete suppression of tumor growth and 100% survival rate of mice, which were also in good health condition. Our work highlights a liposome-based nanomedicine that could effectively deliver oxygen to tumor and alleviate tumor hypoxia state, inducing greatly improved efficacy compared to conventional cancer PDT and demonstrates the promise of modulating unfavorable tumor microenvironment with nanotechnology to overcome limitations of cancer therapies.


Assuntos
Hipóxia/tratamento farmacológico , Oxigênio/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Verde de Indocianina/administração & dosagem , Lipossomos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Control Release ; 277: 114-125, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29408424

RESUMO

The targeted drug delivery with the help of nanocarriers and the controlled drug release at the lesion sites are the most effective ways to enhance therapeutic efficacy and reduce side effects. Here, we built a light sensitive liposome (Her2-I&D-LSL) which was formed by a special phospholipid (PLsPC) and a hydrophobically modified photosensitizer (ICG-ODA). DOX was employed as the therapeutic drug, encapsulating in the internal phase of the liposome whose surface was modified by Her2 antibodies for recognizing tumor cells with high Her2 receptor expression. Mediated by NIR light, Her2-I&D-LSL was proved to generate sufficient ROS to realize PDT, which then triggered the release of DOX for combined chemotherapy. The ROS generation and DOX release were verified to be strictly controlled by NIR light and the proportion of ICG-ODA. Thanks to the mediation of Her2 receptor, the specific DOX release and the combination of PDT-chemotherapy triggered by NIR light, Her2-I&D-LSL showed a significant accumulation in MCF7 and SKOV3 tumors, thus leading to the strongest tumor growth inhibition effect compared to PDT alone (I-LSL) or chemotherapy alone (D-LSL). Her2-I&D-LSL also possessed a great biocompatibility due to the targeted treatment, holding promise for future cancer therapy in clinic.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Doxorrubicina/metabolismo , Liberação Controlada de Fármacos/fisiologia , Estimulação Luminosa/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Células A549 , Animais , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Lipossomos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Fármacos Fotossensibilizantes/administração & dosagem
7.
Nanomedicine (Lond) ; 12(5): 511-534, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28178869

RESUMO

AIM: Whether PEI2k-HAuNS could promote gene transfection efficiency controlled by near-infrared (NIR) light. MATERIALS & METHODS: This safe nonviral gene delivery system was obtained by conjugating low molecular weight (2 kDa) polyethylenimine (PEI) onto hollow gold nanospheres (PEI2k-HAuNS). Upon NIR laser irradiation, there was a conspicuous increase both in the in vitro and in vivo transfection achieved by the nanocomplexes. Furthermore, a plasmid encoding the tumor suppressor TP53 (pTP53) was applied to test antitumor activity. RESULTS: The enhanced gene transfection efficiency and therapy of PEI2k-HAuNS were achieved via the mediation of an NIR laser compared with the other treatments in vitro and in vivo. CONCLUSION: The application of NIR laser irradiated PEI2k-HAuNS can be used as a promising gene delivery systems in vitro and in vivo.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Nanosferas/administração & dosagem , Neoplasias/terapia , Animais , Ouro/química , Humanos , Raios Infravermelhos , Células MCF-7 , Camundongos , Peso Molecular , Nanosferas/química , Neoplasias/genética , Polietilenoimina/química , Transfecção , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Colloids Surf B Biointerfaces ; 48(1): 35-41, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16480856

RESUMO

The purpose of this study was to design a sustained-release formulation of an oily drug. The sustained-release microspheres with self-emulsifying capability containing zedoary turmeric oil (ZTO) were prepared by the quasi-emulsion-solvent-diffusion method. The micromeritic properties, the efficiency of emulsification and the drug-release behavior of the resultant microspheres were investigated. The bioavailability of the microspheres was compared with conventional ZTO self-emulsifying formulations for oral administration using 12 healthy rabbits. An HPLC method was employed to determine the concentration of germacrone in plasma, which was used as an index of ZTO. Spherical and compacted microspheres with average diameters of 100-600 microm have been prepared, and their release behavior in distilled water containing 1.2% (w/v) of polysorbate-80 can be controlled by the ratio of polymer/Areosil200 in the microspheres. The resultant emulsions with mean droplet sizes of 200-500 nm are produced when the microspheres are immersed in phosphate buffer (pH 6.8) under gentle agitation. The stability and the droplet size of the resultant emulsions are also affected by the polymer/Areosil200 ratio in the formulation, while the amount of talc has a marked effect on the self-emulsifying rate. The plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the microspheres with a bioavailability of 135.6% with respect to the conventional self-emulsifying formulation (a good strategy for improving the bioavailability of an oily drug). In conclusion, the sustained-release microspheres with self-emulsifying capability containing ZTO have an improved oral bioavailability. Our study offers an alternative method for designing sustained-release preparations of oily drugs.


Assuntos
Curcuma , Emulsificantes/síntese química , Emulsificantes/farmacocinética , Tecnologia Farmacêutica/métodos , Administração Oral , Animais , Disponibilidade Biológica , Soluções Tampão , Cápsulas , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Preparações de Ação Retardada/administração & dosagem , Difusão , Avaliação Pré-Clínica de Medicamentos/métodos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microesferas , Óleos/química , Polissorbatos/química , Coelhos , Solubilidade , Solventes/química , Fatores de Tempo , Água/química
9.
Biomaterials ; 57: 1-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956192

RESUMO

Antibody-mediated targeting therapy has been successful in treating patients with cancers by improving the specificity and clinical efficacy. In this study, we developed a human epidermal growth factor receptor-2 (HER2) antibody-conjugated drug delivery system, using near-infrared (NIR) light-sensitive liposomes containing doxorubicin (DOX) and hollow gold nanospheres (HAuNS). We demonstrated the specific binding and selective toxicity of the system to HER2-positive tumor cells in co-cultures of HER2-positive and -negative cells. Furthermore, the HER2-antibody-mediated delivery of targeted liposomes was confirmed in a double-tumor model in nude mice simultaneously bearing HER2-positive and -negative tumors. This induced a >2-fold increased accumulation in the tumors with positive expression of HER2 than that with non-targeted liposomes (no HER2-antibody conjugation). The combination of targeted liposomes with NIR laser irradiation had significant antitumor activity in vivo with the tumor inhibition efficiency up to 92.7%, attributed to the increased accumulation in tumors and the double efficacy of photothermal-chemotherapy. Moreover, targeted liposomes did not cause systemic toxicity during the experiment period, attributable to the reduced dose of DOX, the decreased accumulation of liposomes in normal tissues, and the low irradiation power. The targeted liposomes provide a multifunctional nanotechnology platform for antibody-mediated delivery, light-trigged drug release, and combined photothermal-chemotherapy, which may have potential in the clinical treatment of cancer.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Imunoconjugados/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Feminino , Humanos , Hipertermia Induzida , Imunoconjugados/química , Luz , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Fototerapia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Receptor ErbB-2/metabolismo
10.
Clin Cancer Res ; 19(7): 1806-15, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23386691

RESUMO

PURPOSE: RNA interference has the potential to specifically knockdown the expression of target genes and thereby transform cancer therapy. However, lack of effective delivery of siRNA has dramatically limited its in vivo applications. We have developed a multistage vector (MSV) system, composed of discoidal porous silicon particles loaded with nanotherapeutics, that directs effective delivery and sustained release of siRNA in tumor tissues. In this study, we evaluated therapeutic efficacy of MSV-loaded EphA2 siRNA (MSV/EphA2) with murine orthotopic models of metastatic ovarian cancers as a first step toward development of a new class of nanotherapeutics for the treatment of ovarian cancer. EXPERIMENTAL DESIGN: Tumor accumulation of MSV/EphA2 and sustained release of siRNA from MSV were analyzed after intravenous administration of MSV/siRNA. Nude mice with metastatic SKOV3ip2 tumors were treated with MSV/EphA2 and paclitaxel, and therapeutic efficacy was assessed. Mice with chemotherapy-resistant HeyA8 ovarian tumors were treated with a combination of MSV/EphA2 and docetaxel, and enhanced therapeutic efficacy was evaluated. RESULTS: Treatment of SKOV3ip2 tumor mice with MSV/EphA2 biweekly for 6 weeks resulted in dose-dependent (5, 10, and 15 µg/mice) reduction of tumor weight (36%, 64%, and 83%) and number of tumor nodules compared with the control groups. In addition, tumor growth was completely inhibited when mice were treated with MSV/EphA2 in combination with paclitaxel. Furthermore, combination treatment with MSV/EphA2 and docetaxel inhibited growth of HeyA8-MDR tumors, which were otherwise resistant to docetaxel treatment. CONCLUSION: These findings indicate that MSV/EphA2 merits further development as a novel therapeutic agent for ovarian cancer.


Assuntos
Inativação Gênica , Vetores Genéticos/genética , Receptor EphA2/genética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Humanos , Lipossomos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Silício/química , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA