Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Cell Rep ; 39(9): 1199-1217, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32577818

RESUMO

KEY MESSAGE: MiRNA transcriptome analysis of different tissues in poplar and larch suggests variant roles of miRNAs in regulating wood formation between two kinds of phyla. Poplar and larch belong to two different phyla. Both are ecological woody species and major resources for wood-related industrial applications. However, wood properties are different between these two species and the molecular basis is largely unknown. In this study, we performed high-throughput sequencing of microRNAs (miRNAs) in the three tissues, xylem, phloem and leaf of Populus alba × Populus glandulosa and Larix kaempferi. Differentially expressed miRNA (DEmiRNA) analysis identified 85 xylem-specific miRNAs in P. alba × P. glandulosa and 158 xylem-specific miRNAs in L. kaempferi. Among 36 common miRNAs, 12 were conserved between the two species. GO and KEGG analyses of the miRNA target genes showed similar metabolism in two species. Through KEGG and BLASTN, we predicted target genes of xylem differentially expressed (DEmiRNA) in the wood formation-related pathways and located DEmiRNAs in these pathways. A network was built for wood formation-related DEmiRNAs, their target genes and orthologous genes in Arabidopsis thaliana. Comparison of DEmiRNA and target gene annotation between P. alba × P. glandulosa and L. kaempferi suggested the different functions of DEmiRNAs and divergent mechanism in wood formation between two species, providing knowledge to understand wood formation mechanism in gymnosperm and angiosperm woody plants.


Assuntos
Larix/genética , MicroRNAs/genética , Populus/genética , Madeira/genética , Arabidopsis/genética , Sequência de Bases , Celulose/genética , Celulose/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/genética , Lignina/metabolismo , Floema/genética , Folhas de Planta/genética , Polissacarídeos/genética , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/genética
2.
New Phytol ; 222(1): 244-260, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30276825

RESUMO

Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and coexpressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull-down/co-immunoprecipitation experiments supported a hypothesis of PtrCAD1/PtrCCR2 heterodimer formation. These results provide evidence for the formation of PtrCAD1/PtrCCR2 protein complexes in monolignol biosynthesis in planta.


Assuntos
Lignina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Interferência de RNA , Proteínas Recombinantes/metabolismo , Xilema/metabolismo
3.
Planta ; 245(5): 927-938, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28083709

RESUMO

MAIN CONCLUSION: Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.


Assuntos
Proteínas de Plantas/genética , Populus/genética , Transcriptoma , Madeira/genética , Parede Celular/metabolismo , Celulose/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Anotação de Sequência Molecular , Especificidade de Órgãos , Floema/genética , Floema/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Análise de Sequência de RNA , Fatores de Transcrição/genética , Madeira/crescimento & desenvolvimento , Xilema/genética , Xilema/crescimento & desenvolvimento
4.
Plant Cell ; 26(3): 894-914, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24619611

RESUMO

We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.


Assuntos
Lignina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma , Cinética , Espectrometria de Massas , Polimorfismo de Nucleotídeo Único
5.
Plant Cell ; 26(3): 876-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24619612

RESUMO

As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/biossíntese , Populus/metabolismo , Biologia de Sistemas , Coenzima A Ligases/genética , Imunoprecipitação , Espectrometria de Massas , Modelos Biológicos , Propionatos , RNA Mensageiro/genética , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 110(26): 10848-53, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754401

RESUMO

Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.


Assuntos
Regulação para Baixo/genética , Lacase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Populus/enzimologia , Populus/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lacase/antagonistas & inibidores , Lignina/antagonistas & inibidores , Lignina/química , Lignina/metabolismo , Filogenia , Proteínas de Plantas/genética
7.
J Proteome Res ; 14(10): 4158-68, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26325666

RESUMO

Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.


Assuntos
Celulose/biossíntese , Proteínas de Plantas/isolamento & purificação , Populus/genética , Proteoma/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Madeira/metabolismo , Metabolismo dos Carboidratos , Celulose/genética , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Madeira/química , Xilema/genética , Xilema/metabolismo
8.
Plant Biotechnol J ; 12(9): 1174-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25330253

RESUMO

Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Lignina/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Plantas/enzimologia , Engenharia de Proteínas
9.
Plant Physiol ; 161(3): 1501-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344904

RESUMO

4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.


Assuntos
Vias Biossintéticas , Coenzima A Ligases/metabolismo , Coenzima A/metabolismo , Simulação por Computador , Ácidos Cumáricos/metabolismo , Lignina/biossíntese , Populus/enzimologia , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Vias Biossintéticas/efeitos dos fármacos , Western Blotting , Ácidos Cafeicos/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Cinética , Lignina/química , Fenilpropionatos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais , Populus/efeitos dos fármacos , Propionatos , Proteômica , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/efeitos dos fármacos , Xilema/efeitos dos fármacos , Xilema/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(52): 21253-8, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160716

RESUMO

The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Lignina/biossíntese , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Populus/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Xilema/metabolismo , Hidrolases de Éster Carboxílico/química , Cromatografia Líquida , Ácidos Cumáricos , Primers do DNA/genética , Hidroxilação , Imunoprecipitação , Cinética , Espectrometria de Massas , Proteínas de Membrana/química , Microscopia Confocal , Estrutura Molecular , Complexos Multiproteicos/química , Fenóis , Fenilpropionatos , Plasmídeos/genética , Propionatos , Transcinamato 4-Mono-Oxigenase/química , Leveduras
11.
Plant Sci ; 346: 112159, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901779

RESUMO

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Assuntos
Parede Celular , Regulação da Expressão Gênica de Plantas , Lignina , Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Parede Celular/metabolismo , Lignina/metabolismo , Lignina/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Xilema/genética , Madeira/metabolismo , Madeira/genética , Madeira/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco CYS2-HIS2 , Dedos de Zinco
12.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173053

RESUMO

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Assuntos
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenases de Função Mista/metabolismo , Madeira/metabolismo , Celulose/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
13.
Planta ; 236(3): 879-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729823

RESUMO

Lignin content and composition are largely determined by the composition and quantity of the monolignol precursors. Individual enzymes of the monolignol biosynthetic pathway determine the composition and quantity of monolignols. Monolignol biosynthesis in angiosperms is mediated by ten enzyme families. We developed a method using a total protein extract (soluble and microsomal) for the comprehensive and simultaneous analysis of these ten enzyme activities in a single target tissue, stem differentiating xylem (SDX) of Populus trichocarpa. As little as 300 mg fresh weight of SDX is sufficient for triplicate assays of all ten enzyme activities. To expand the effectiveness of the analysis, we quantified the reaction products directly by HPLC and developed a universal method that can separate the substrates and products of all enzymes. The specific activities measured with this simple approach are similar to those obtained with the optimum conditions previously established for each individual enzyme. This approach is applicable to the enzyme activity analysis for both P. trichocarpa (angiosperm) and Pinus taeda (gymnosperm) and is particularly useful when a large number of samples need to be analyzed for all monolignol biosynthetic enzymes.


Assuntos
Lignina/biossíntese , Pinus taeda/enzimologia , Proteínas de Plantas/análise , Caules de Planta/enzimologia , Populus/enzimologia , Xilema/enzimologia , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Ensaios Enzimáticos , Metiltransferases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato
14.
Planta ; 236(3): 795-808, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22628084

RESUMO

Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis-Menten and inhibition kinetics with LC-MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis-Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.


Assuntos
Lignina/biossíntese , Oxigenases de Função Mista/metabolismo , Populus/metabolismo , Xilema/enzimologia , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroxilação , Cinética , Lignina/análise , Plantas Geneticamente Modificadas , Leveduras/metabolismo
15.
Anal Chem ; 83(18): 7020-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21851065

RESUMO

As a major component in plant cell walls, lignin is an important factor in numerous industrial processes, especially in wood saccharification and fermentation to biofuels. The ability to chemically differentiate and spatially locate lignins in wood cell structures provides an important contribution to the effort to improve these processes. The spatial distribution of the syringyl (S) and guaiacyl (G) lignins, both over larger regions and within a single cell wall, on poplar ( Populus trichocarpa ) wood cross-sections was determined via time-of-flight secondary ion mass spectrometry (ToF-SIMS). This is the first time that direct chemically specific mass spectrometric mapping has been employed to elucidate the spatial distribution of S and G lignins. In agreement with results obtained by UV microscopy, ToF-SIMS images clearly show that the guaiacyl lignin is predominantly located in the vessel cell walls of poplar wood while syringyl lignin is mainly located in the fiber cell walls. The G/S ratio in vessel cell walls was determined to be approximately twice that found in fiber cell walls. A combination of Bi ToF-SIMS spectral image acquisition and C(60) sputtering provided the ability to attain the combination of spatial resolution and signal-to-noise necessary to determine the distribution of S and G lignins in a single cell wall. By this technique, it was possible to demonstrate that more guaiacyl lignin is located in the middle lamella layer and more syringyl lignin is located in the inner cell wall area.


Assuntos
Lignina/análise , Populus/química , Espectrometria de Massa de Íon Secundário/métodos , Parede Celular/química , Fulerenos/química , Caules de Planta/química
16.
Plant Cell Physiol ; 51(1): 144-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19996151

RESUMO

As a step toward a comprehensive description of lignin biosynthesis in Populus trichocarpa, we identified from the genome sequence 95 phenylpropanoid gene models in 10 protein families encoding enzymes for monolignol biosynthesis. Transcript abundance was determined for all 95 genes in xylem, leaf, shoot and phloem using quantitative real-time PCR (qRT-PCR). We identified 23 genes that most probably encode monolignol biosynthesis enzymes during wood formation. Transcripts for 18 of the 23 are abundant and specific to differentiating xylem. We found evidence suggesting functional redundancy at the transcript level for phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), p-hydroxycinnamoyl-CoA:quinate shikimate p-hydroxycinnamoyltransferase (HCT), caffeoyl-CoA O-methyltransferase (CCoAOMT) and coniferyl aldehyde 5-hydroxylase (CAld5H). We carried out an enumeration-based motif identification and discriminant analysis on the promoters of all 95 genes. Five core motifs correctly discriminate the 18 xylem-specific genes from the 77 non-xylem genes. These motifs are similar to promoter elements known to regulate phenylpropanoid gene expression. This work suggests that genes in monolignol biosynthesis are regulated by multiple motifs, often related in sequence.


Assuntos
Vias Biossintéticas/genética , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , RNA de Plantas/genética , Motivos de Aminoácidos/genética , Enzimas/biossíntese , Enzimas/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Floema/enzimologia , Floema/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/análise , RNA de Plantas/metabolismo , Transcrição Gênica/fisiologia , Xilema/enzimologia , Xilema/genética
17.
Nat Commun ; 9(1): 1579, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679008

RESUMO

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.


Assuntos
Lignina/biossíntese , Lignina/genética , Populus/genética , Madeira/química , Madeira/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Populus/metabolismo , Transcriptoma/genética , Árvores/genética , Árvores/metabolismo , Xilema/metabolismo
18.
Microb Biotechnol ; 10(6): 1546-1557, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28322023

RESUMO

Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.


Assuntos
Proteínas de Bactérias/genética , Firmicutes/genética , Firmicutes/metabolismo , Lignina/metabolismo , Populus/química , Populus/genética , Ácidos/química , Proteínas de Bactérias/metabolismo , Biotransformação , Populus/metabolismo , Populus/microbiologia , Transcriptoma
19.
Appl Biochem Biotechnol ; 168(4): 947-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903324

RESUMO

Downregulated lignin transgenic black cottonwood (Populus trichocarpa) was used to elucidate the effect of lignin and xylan content on enzymatic saccharification. The lignin contents of three transgenic samples (4CL1-1, 4CL1-4, and CH8-1-4) were 19.3, 16.7, and 15.0 %, respectively, as compared with the wild type (21.3 %). The four pretreatments were dilute acid (0.1 % sulfuric acid, 185 °C, 30 min), green liquor (6 % total titratable alkali, 25 % sulfidity based on TTA, 185 °C, and 15 min.), autohydrolysis (185 °C, 30 min), and ozone delignification (25 °C, 30 min). Following the pretreatment, enzymatic saccharification was carried out using an enzyme charge of 5 FPU/g of substrates. The removal of lignin and hemicellulose varies with both the types of pretreatments and the lignin content of the transgenic trees. Due to the greatest removal of lignin, green liquor induced the highest sugar production and saccharification efficiency, followed by acid, ozone, and autohydrolysis in descending order. The results indicated that lignin is the main recalcitrance of biomass degradation. At a given lignin content, pretreatment with ozone delignification had lower saccharification efficiency than the other pretreatment methods due to higher xylan content.


Assuntos
Celulase/metabolismo , Lignina/metabolismo , Polissacarídeos/química , Populus/genética , Populus/metabolismo , Madeira/química , Regulação para Baixo , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/química , Ozônio/química , Plantas Geneticamente Modificadas , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA