Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614309

RESUMO

Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical Ag2O NPs with an average size of 45 nm and a ζ-potential of -32 mV. The resulting Ag2O NPs at concentrations of 0.001-0.1% were transferred into acetone and mixed with a fluoroplast-based varnish. The developed coating made it possible to completely eliminate damage to a Teflon cutting board. The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of the added Ag2O NPs. The 0.01-0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01-0.1% coating can be used to protect cutting boards from bacterial contamination in the meat processing industry.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Politetrafluoretileno , Peróxido de Hidrogênio , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Carne
2.
Part Fibre Toxicol ; 19(1): 55, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933442

RESUMO

As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.


Assuntos
Poluentes Ambientais , Nanopartículas , Microplásticos , Nanopartículas/toxicidade , Medição de Risco
3.
Small ; 14(23): e1703915, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733549

RESUMO

Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1ß (IL-1ß) production, in order of long > medium > short. However, there are no differences in transforming growth factor-ß1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface.


Assuntos
Escherichia coli/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Testes de Toxicidade , Animais , Antibacterianos/farmacologia , Linhagem Celular , Citocinas/biossíntese , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Humanos , Hidrodinâmica , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/ultraestrutura , Poloxâmero/farmacologia , Eletricidade Estática
4.
Part Fibre Toxicol ; 14(1): 13, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431555

RESUMO

BACKGROUND: The wide application of engineered nanoparticles has induced increasing exposure to humans and environment, which led to substantial concerns on their biosafety. Some metal oxides (MOx) have shown severe toxicity in cells and animals, thus safe designs of MOx with reduced hazard potential are desired. Currently, there is a lack of a simple yet effective safe design approach for the toxic MOx. In this study, we determined the key physicochemical properties of MOx that lead to cytotoxicity and explored a safe design approach for toxic MOx by modifying their hazard properties. RESULTS: THP-1 and BEAS-2B cells were exposed to 0-200 µg/mL MOx for 24 h, we found some toxic MOx including CoO, CuO, Ni2O3 and Co3O4, could induce reactive oxygen species (ROS) generation and cell death due to the toxic ion shedding and/or oxidative stress generation from the active surface of MOx internalized into lysosomes. We thus hypothesized that surface passivation could reduce or eliminate the toxicity of MOx. We experimented with a series of surface coating molecules and discovered that ethylenediamine tetra (methylene phosphonic acid) (EDTMP) could form stable hexadentate coordination with MOx. The coating layer can effectively reduce the surface activity of MOx with 85-99% decrease of oxidative potential, and 65-98% decrease of ion shedding. The EDTMP coated MOx show negligible ROS generation and cell death in THP-1 and BEAS-2B cells. The protective effect of EDTMP coating was further validated in mouse lungs exposed to 2 mg/kg MOx by oropharyngeal aspiration. After 40 h exposure, EDTMP coated MOx show significant decreases of neutrophil counts, lactate dehydrogenase (LDH) release, MCP-1, LIX and IL-6 in bronchoalveolar lavage fluid (BALF), compared to uncoated particles. The haematoxylin and eosin (H&E) staining results of lung tissue also show EDTMP coating could significantly reduce the pulmonary inflammation of MOx. CONCLUSIONS: The surface reactivity of MOx including ion shedding and oxidative potential is the dominated physicochemical property that is responsible for the cytotoxicity induced by MOx. EDTMP coating could passivate the surface of MOx, reduce their cytotoxicity and pulmonary hazard effects. This coating would be an effective safe design approach for a broad spectrum of toxic MOx, which will facilitate the safe use of MOx in commercial nanoproducts.


Assuntos
Materiais Revestidos Biocompatíveis/química , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Metais Pesados/toxicidade , Organofosfonatos/química , Animais , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nanopartículas Metálicas/química , Metais Pesados/química , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
5.
Nanotechnology ; 25(49): 495102, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25409786

RESUMO

Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs (((SPIO))o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. ((SPIO))o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected ((SPIO))o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected ((SPIO))o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected ((SPIO))o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/análise , Nanopartículas de Magnetita/química , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Animais , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Células Cultivadas , Compostos Férricos , Rim/química , Fígado/química , Campos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Masculino , Teste de Materiais , Nanotubos de Carbono/ultraestrutura , Ratos Wistar , Baço/química
6.
Nano Lett ; 12(6): 3050-61, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22546002

RESUMO

We compared the use of bovine serum albumin (BSA) and pluronic F108 (PF108) as dispersants for multiwalled carbon nanotubes (MWCNTs) in terms of tube stability as well as profibrogenic effects in vitro and in vivo. While BSA-dispersed tubes were a potent inducer of pulmonary fibrosis, PF108 coating protected the tubes from damaging the lysosomal membrane and initiating a sequence of cooperative cellular events that play a role in the pathogenesis of pulmonary fibrosis. Our results suggest that PF108 coating could serve as a safer design approach for MWCNTs.


Assuntos
Materiais Revestidos Biocompatíveis/química , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Nanotubos de Carbono/toxicidade , Poloxâmero/química , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Administração por Inalação , Animais , Camundongos , Fibrose Pulmonar/patologia
7.
Chemosphere ; 307(Pt 1): 135601, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35817191

RESUMO

Micro/nanoplastics (MNPs) are widespread environmental pollutants that cause high health risks. However, high heterogeneity in particle sizes and chemical compositions of MNPs make their accurate characterization extremely challenging. Herein, we established a matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) strategy for the unambiguous characterization of different types of MNPs with high performance, including polystyrene, polyethylene glycol terephthalate, polyamide, polymethyl methacrylate, acrylonitrile butadiene styrene copolymer, and polycarbonate. The MNP sample preparation and detection conditions were systematically optimized by using response surface methodology, and the MS detection signal-to-noise ratios were improved 1.5 times on average. The ultrahigh mass resolution of FTICR MS is crucial to the unambiguous elucidation of MNP structures. We demonstrate that this MS strategy is highly efficient in the characterization of polymer constitutions of environmental MNPs derived from foam, bottles, cable ties, and compact discs, providing a promising tool for MNP detection and safety evaluation.


Assuntos
Acrilonitrila , Poluentes Ambientais , Butadienos , Poluentes Ambientais/análise , Análise de Fourier , Microplásticos , Nylons , Polietilenoglicóis , Polímeros , Polimetil Metacrilato , Poliestirenos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA