Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(34): 15689-15697, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35930760

RESUMO

Stacking interactions are of significant importance in the fields of chemistry, biology, and material optoelectronics because they determine the efficiency of charge transfer between molecules and their quantum states. Previous studies have proven that when two monomers are π-stacked in series to form a dimer, the electrical conductance of the dimer is significantly lower than that of the monomer. Here, we present a strong opposite case that when two anthanthrene monomers are π-stacked to form a dimer in a scanning tunneling microscopic break junction, the conductance increases by as much as 25 in comparison with a monomer, which originates from a room-temperature quantum interference. Remarkably, both theory and experiment consistently reveal that this effect can be reversed by changing the connectivity of external electrodes to the monomer core. These results demonstrate that synthetic control of connectivity to molecular cores can be combined with stacking interactions between their π systems to modify and optimize charge transfer between molecules, opening up a wide variety of potential applications ranging from organic optoelectronics and photovoltaics to nanoelectronics and single-molecule electronics.


Assuntos
Grafite , Condutividade Elétrica , Eletrodos , Eletrônica , Microscopia de Tunelamento , Polímeros
2.
Adv Healthc Mater ; 12(5): e2202245, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373209

RESUMO

Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia/métodos , Cisplatino/farmacologia , Polietilenoglicóis , Verde de Indocianina/farmacologia , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
3.
Chem Commun (Camb) ; 57(34): 4158-4161, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33908477
4.
Biomaterials ; 313: 122799, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39243671

RESUMO

Gene therapy offers a promising avenue for treating ischemic diseases, yet its clinical efficacy is hindered by the limitations of single gene therapy and the high oxidative stress microenvironment characteristic of such conditions. Lipid-polymer hybrid vectors represent a novel approach to enhance the effectiveness of gene therapy by harnessing the combined advantages of lipids and polymers. In this study, we engineered lipid-polymer hybrid nanocarriers with tailored structural modifications to create a versatile membrane fusion lipid-nuclear targeted polymer nanodelivery system (FLNPs) optimized for gene delivery. Our results demonstrate that FLNPs facilitate efficient cellular uptake and gene transfection via membrane fusion, lysosome avoidance, and nuclear targeting mechanisms. Upon encapsulating Hepatocyte Growth Factor plasmid (pHGF) and Catalase plasmid (pCAT), HGF/CAT-FLNPs were prepared, which significantly enhanced the resistance of C2C12 cells to H2O2-induced injury in vitro. In vivo studies further revealed that HGF/CAT-FLNPs effectively alleviated hindlimb ischemia-induced gangrene, restored motor function, and promoted blood perfusion recovery in mice. Metabolomics analysis indicated that FLNPs didn't induce metabolic disturbances during gene transfection. In conclusion, FLNPs represent a versatile platform for multi-dimensional assisted gene delivery, significantly improving the efficiency of gene delivery and holding promise for effective synergistic treatment of lower limb ischemia using pHGF and pCAT.


Assuntos
Terapia Genética , Isquemia , Lipídeos , Polímeros , Animais , Isquemia/terapia , Terapia Genética/métodos , Lipídeos/química , Camundongos , Polímeros/química , Nanopartículas/química , Fator de Crescimento de Hepatócito/genética , Linhagem Celular , Transfecção/métodos , Plasmídeos/genética , Técnicas de Transferência de Genes , Masculino , Membro Posterior/irrigação sanguínea , Catalase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA